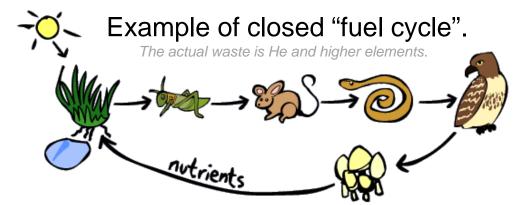


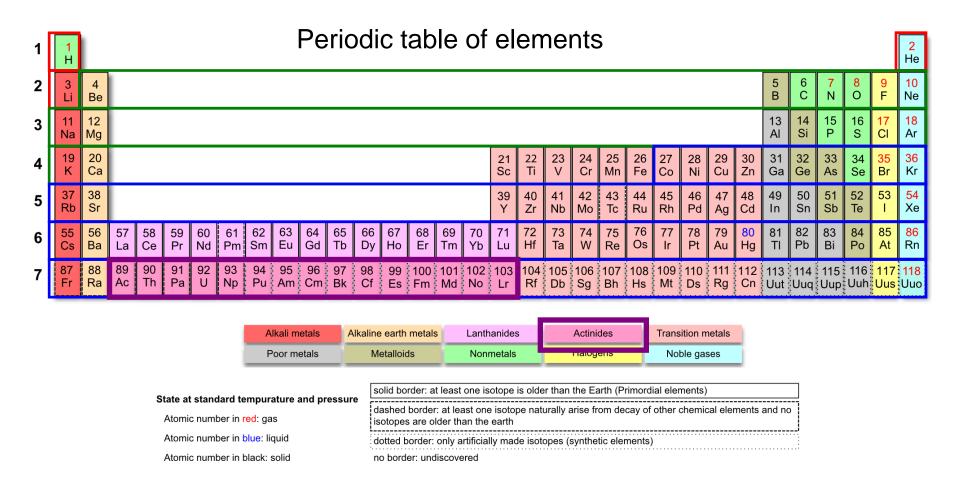
Jiří Křepel :: FAST reactor group :: Paul Scherrer Institut


Fuel cycle aspects of MSR

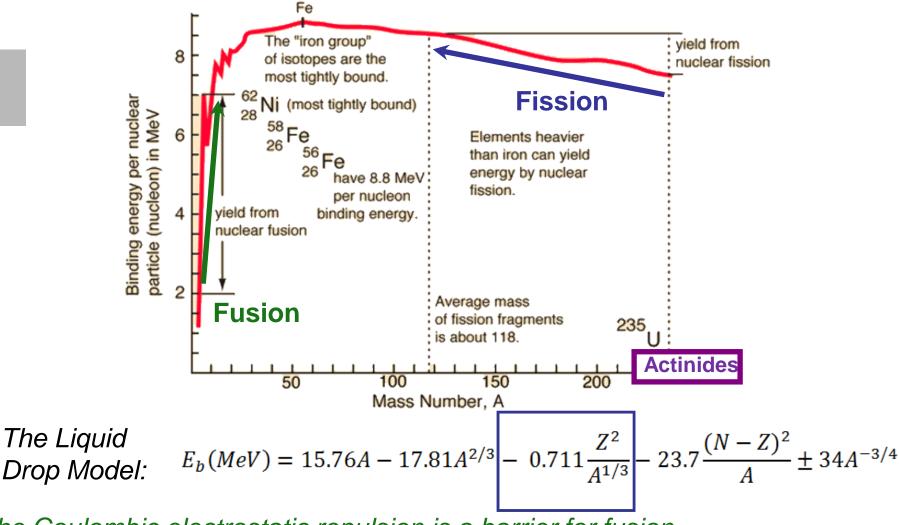
MSR Summer school, July 2-4, 2017, Lecco (Como Lake), Italy


What is fuel cycle? – process chain to obtain energy

Nuclear Fuel cycle


Front end: Back end: **Exploration** Interim storage Mining Transportation 0 O Milling Reprocessing 0 0 Conversion **Partitioning** \circ **Enrichment Transmutation Fabrication** Waste disposal

This presentation covers the reactor physics aspects of irradiation and recycling.


Nuclear fuel (resources) => Elements and their origin

Originated by: Big Bang, Stellar, and Supernova nucleosynthesis.

"Nuclear" Energy and Nuclear forces

The Coulombic electrostatic repulsion is a barrier for fusion.

The reduced Coulombic electrostatic repulsion "drives" the fission.

Actinides as nuclear fuel => are all unstable

Actinides, the heaviest primordial elements in the periodic table,

■ Cf 98

□ Bk 97

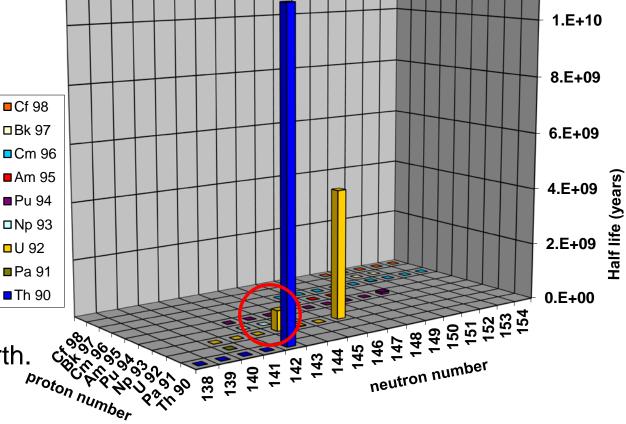
■ Pu 94

■Np 93

■U 92 ■Pa 91

are all unstable.

But three of them have relatively long half-life:

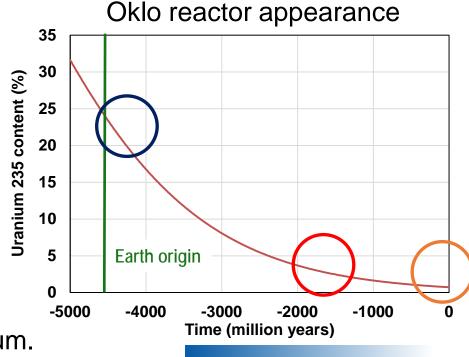

> ²³⁵U: 0.7 x10⁹ years ²³⁸U: 4.5 x10⁹ years

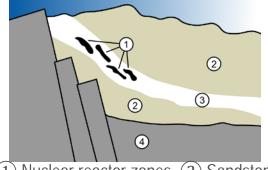
²³²Th: 14 x10⁹ years

Accordingly: they are still present in nature.

❖ For 1 kg of ²³⁸U there ■Th 90 are 3-4 kg of ²³²Th and 7.2 g of ²³⁵U on the Earth.

❖ ²³⁵U is the only fissile nuclide and its reserves are the smallest.



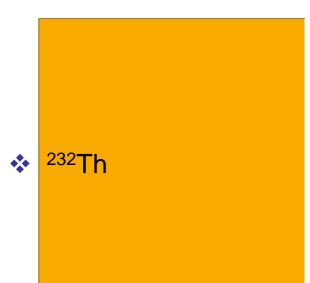

Actinides half-life in linear scale.

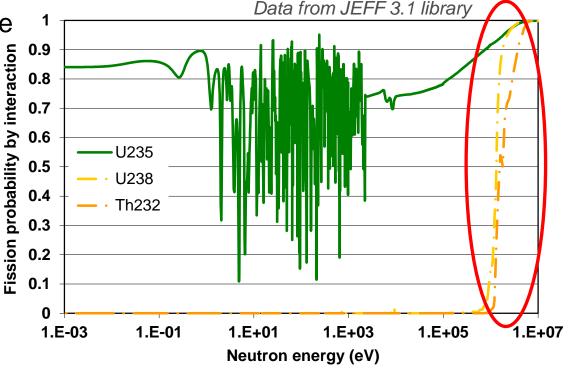
Natural uranium evolution – Oklo reactor

- 235U and 238U half-lifes differ. Accordingly the 235U content in natural uranium is evolving.
- 1.7 billions years ago it enabled water moderated natural nuclear fission reactor in Oklo (Africa).
- ❖ Why not earlier? Several Dissolution—Precipitation cycles were necessary for the geological concentration of uranium.
- What about fast reactor? What if the geological concentration in the earth outer core was faster? If so, it may be still running on U-Pu cycle.
- ❖ Nowadays there is only 0.72% of ²³⁵U in natural uranium. ⊗

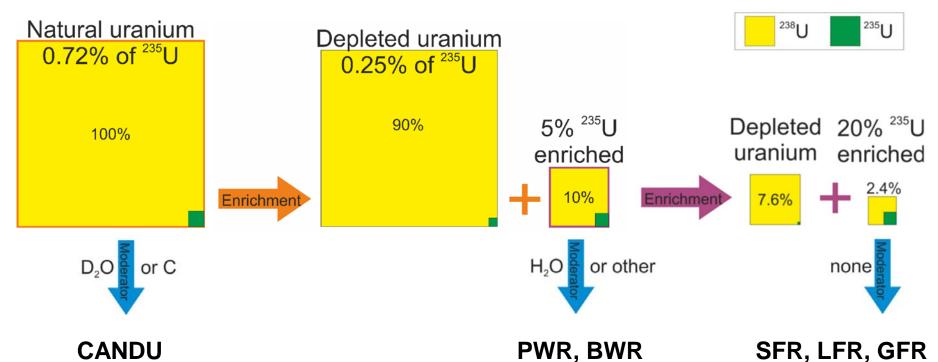
1) Nuclear reactor zones, 2) Sandstone,

3 Uranium ore layer, 4 Granite


Sustainability = maximal resources utilization


* Reserves of actinides on the earth are not renewable.

Aim: their max. utilization!



- 235U is the only primordial fissile nuclide and it is now the main working horse.
- ²³²Th and ²³⁸U are fissionable by fast neutrons (²³⁸U up to 5x more than ²³²Th).
- Both of them are mainly capturing neutrons, what leads to their transmutation.

Sustainability of initial ²³⁵U fueled reactors is low

Burn-up of the fuel in **FIMA*** % (GWd/t_{hm}):

0.65-0.75 (6.5-7.5)

3.3-5.0 (33-50)

10-15 (100-150)

Burn-up in % of the original mass of natural uranium:

0.65-0.75

0.33-0.5

0.24-0.36

Sustainability?

Any ²³⁵U fueled reactor has low sustainability

(not even 1% of natural uranium is utilized)

^{*} FIMA = **FI**ssion **MA**terial = actinides = heavy metals

Sustainability = 238 U and 232 Th catalytic burning

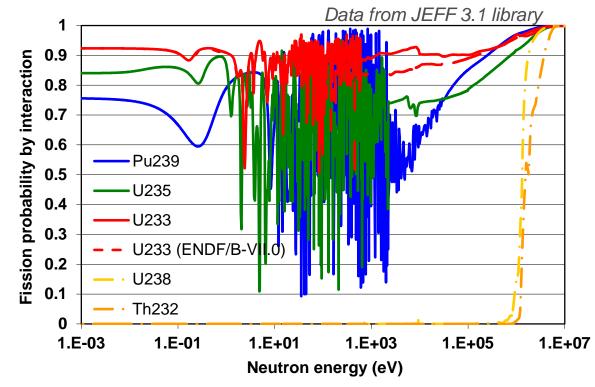
- One neutron is needed for next fission.
- One of the new neutrons may be also captured by fertile ²³⁸U or ²³²Th.
- Then they will be transmuted to fissile ²³⁹Pu or ²³³U.
- This transmutation is also called conversion or breeding.
- 239Pu or 233U may actually act as an intermediary (catalyzer)
- ❖ and ²³⁸U or ²³²Th indirectly as a fuel.
- Very tight neutron economy.

Chain reaction U235 fissile nucleus: U233 Pu239 nucleus splitting fission products energy release Fertile fuel (Th232 or U238) neutron losses Catalyzer

(U233 or Pu239)

²³³U and ²³⁹Pu: synthetic (secondary) fissile elements

❖ Transmutation of fertile ²³²Th and ²³⁸U create fissile ²³³U and ²³⁹Pu:


$${}^{232}_{90}Th + {}^{1}_{0}n \longrightarrow {}^{233}_{90}Th \xrightarrow{\beta^{-}22 \min} \longrightarrow {}^{233}_{91}Pa \xrightarrow{\beta^{-}27 day} \longrightarrow {}^{233}_{92}U$$

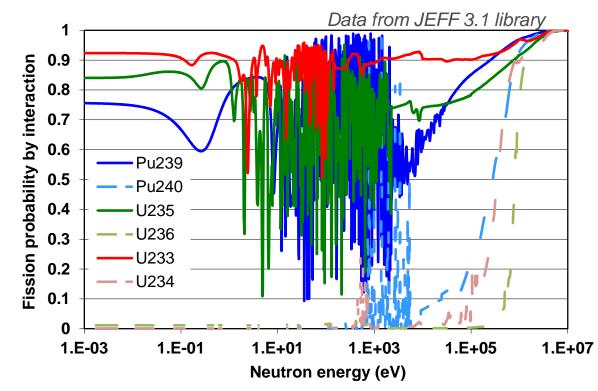
$${}^{238}_{92}U + {}^{1}_{0}n \longrightarrow {}^{239}_{92}U \xrightarrow{\beta^{-}24 \min} \longrightarrow {}^{239}_{93}Np \xrightarrow{\beta^{-}2.4 day} \longrightarrow {}^{239}_{94}Pu$$

In general, transmutation which increases fission probability is called Breeding.

(BTW: burning = fission)

❖ High fission probability up to 90% is the biggest advantage of ²³³U. (for ²³⁹Pu it is 60-75%) (JEFF 3.1 X ENDF/B VII.0)

²³⁴U, ²³⁶U, and ²³⁴Pu: secondary fertile elements


❖ Transmutation of fissile ²³³U, ²³⁵U, and ²³⁹Pu create fertile ²³⁴U, ²³⁴U, and ²⁴⁰Pu:

$${}^{233}_{92}U + {}^{1}_{0}n \longrightarrow {}^{234}_{92}U$$

$${}^{235}_{92}U + {}^{1}_{0}n \longrightarrow {}^{236}_{92}U$$

$${}^{239}_{94}Pu + {}^{1}_{0}n \longrightarrow {}^{240}_{94}Pu$$

- When fissile nuclide captures neutron the products is typically fertile, thus it is called: Parasitic capture.
- The secondary fertile element needs to absorb one additional neutron to became fissile!

Fissile or fertile? (fission barrier X binding energy)

There exist pairing effect described even by the Liquid Drop Model:

$$E_b(MeV) = a_V A - a_S A^{\frac{2}{3}} - a_C \frac{Z^2}{A^{\frac{1}{3}}} - a_A \frac{(A - 2Z)^2}{A} \pm \delta(A, Z)$$
where: $\delta(A, Z) = \begin{pmatrix} +\delta_0 & for & Z, N & even \\ 0 & 0 & -\delta_0 & for & Z, N & odd \end{pmatrix}$ (or actually $\pm 34A^{-3/4}$)

Hence the interacting neutron brings different binding energy to each nuclide.

Nuclide:
$${}^{232}_{90}Th + {}^{1}_{0}n \longrightarrow {}^{233}_{90}Th \xrightarrow{\beta^{-}22\,\text{min}} \longrightarrow {}^{233}_{91}Pa \xrightarrow{\beta^{-}27\,\text{day}} \longrightarrow {}^{233}_{92}U$$

Neutron nr.: 142 (even) 143 (odd) 142 (even) 143 (odd)

Fissile: no yes (poorly) no yes
$${}^{233}_{92}U + {}^{1}_{0}n \longrightarrow {}^{234}_{92}U + {}^{1}_{0}n \longrightarrow {}^{235}_{92}U + {}^{1}_{0}n \longrightarrow {}^{236}_{92}U$$
142 (even) 143 (odd) 144 (even)
no yes no

Fission: binding energy > fission barrier. However, with growing nucleon number the barrier is **decreasing** => yes or no is not black and white.

Uranium and Thorium fuel cycles

❖Cycle label:	U-Pu	Half-life	Th-U	Half-life
❖ Main fertile:	²³⁸ U	4.5e9	²³² Th	14e9
❖ Main fissile:	²³⁹ Pu	2.4e4	233 U	1.6e5
Secondary fertile:	²⁴⁰ Pu	6500	²³⁴ U	2.5e5
Secondary fissile:	²⁴¹ Pu (β ⁻)	14	²³⁵ U	7.0e8
Tertiary fertile:	²⁴² Pu or ²⁴¹ Am	3.7e5 or 432	236 U	2.3e7
Tertiary fissile:	²⁴³ Pu (β ⁻) or ²⁴² Am		²³⁷ U (β ⁻)	
❖ 4 th fertile:	²⁴⁴ Pu or ²⁴³ Am		²³⁷ Np or ²³⁸ Pu	
❖ 4 th fissile:	²⁴⁵ Cm or ²⁴⁴ Am (β ⁻)		²³⁹ Pu	

❖ Th-U cycle produces less Minor Actinide - MA (Am, Cm, Np (from ²³⁵U) etc). It is based on ²³⁹Pu position. It has implication on the waste radiotoxicity.

²³³Pa and ²³⁹Np: intermediate products

❖ Transmutation of fertile ²³²Th and ²³⁸U goes through fertile ²³³Pa and ²³⁹Np:

$${}^{232}_{90}Th + {}^{1}_{0}n \longrightarrow {}^{233}_{90}Th \xrightarrow{\beta^{-}22 \min} \longrightarrow {}^{233}_{91}Pa \xrightarrow{\beta^{-}27 day} \longrightarrow {}^{233}_{92}U$$

$${}^{238}_{92}U + {}^{1}_{0}n \longrightarrow {}^{239}_{92}U \xrightarrow{\beta^{-}24 \min} \longrightarrow {}^{239}_{93}Np \xrightarrow{\beta^{-}2.4 day} \longrightarrow {}^{239}_{94}Pu$$

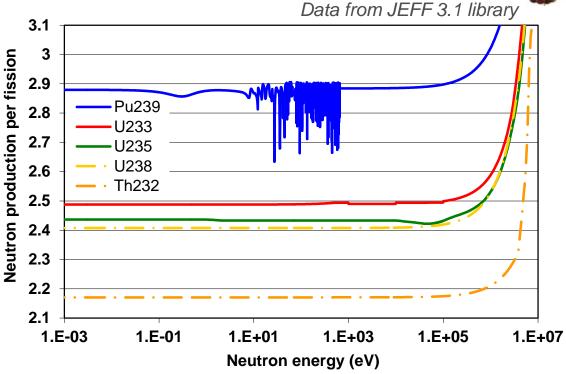
❖ It may happen that ²³³Pa and ²³⁹Np capture neutron:

$${}^{233}_{91}Pa + {}^{1}_{0}n \longrightarrow {}^{234}_{90}Pa \xrightarrow{\beta^{-}6.7h} {}^{234}_{92}U$$

$${}^{239}_{93}Np + {}^{1}_{0}n \longrightarrow {}^{240}_{93}Np \xrightarrow{\beta^{-}65\min} {}^{240}_{94}Pu$$

- ❖ The capture probability depends on cross-section and number of atoms N.
- * After some time equilibrium will establish where the 232 Th and 238 U capture rates (*CR*) and the 233 Pa and 239 Np decay rates (λN) are equal: *CR*=λN.
- Based on the different decay constants λ, there will be 11x more ²³³Pa than ²³⁹Np in the core with the same transmutation rate.

How many neutrons are available from fission?


Number of average neutrons per fission (v-bar or \overline{v}) is function of interacting neutron energy and differs between actinides.

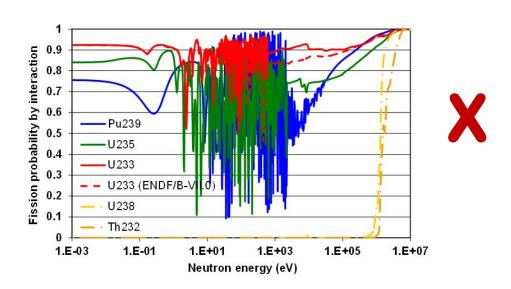
❖ From 5 basic isotopes (²³²Th, ²³⁸U, ²³³U, ²³⁵U, and ²³⁹Pu), it is highest for ²³⁹Pu: around **2.9 neutrons**.

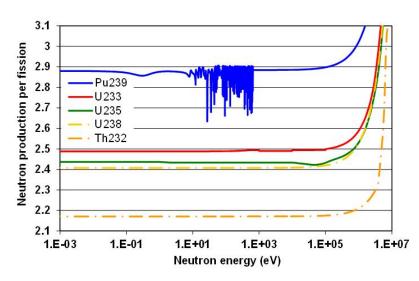
Second best is the ²³³U with only 2.5 neutrons.

• 235U with 2.43 neutrons is the worst from the major fissile isotopes.

232Th and 238U, if fissioned, also produce neutrons.

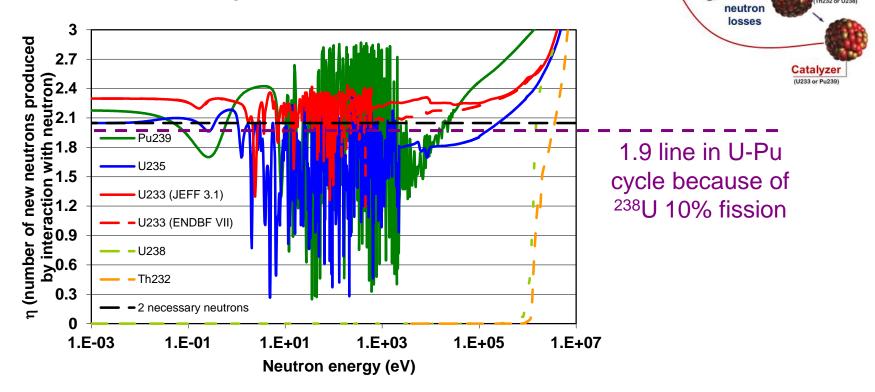
Chain reaction


neutron


Fertile fuel

η – fission probability X neutrons originated per fission

- Eta (η) as the neutron generation factor describes generally the number of neutrons emitted by isotope/fuel per neutron absorption.
- It was introduced by Enrico Fermi around spring 1941* as a part of the 4-factors formula for the fuel as a whole and solely for thermal neutrons.
- It is often used for discussion of single isotope breeding capability.
- ❖ In this case, it is a product of fission probability and v-bar:

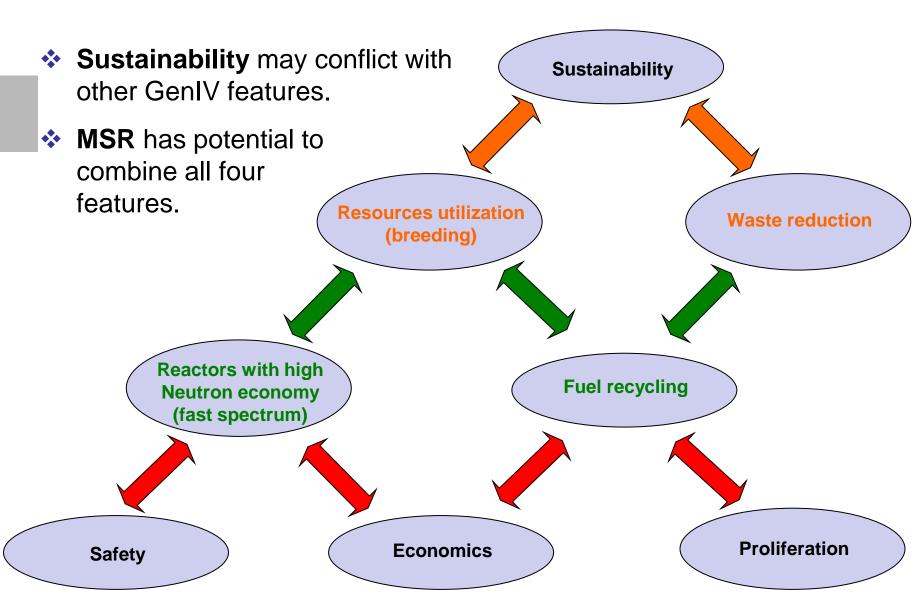

η – fission probability X neutrons originated per fission

Recalling the trivial neutron economy, we need:

1 neutron to maintain the fission chain reaction and another

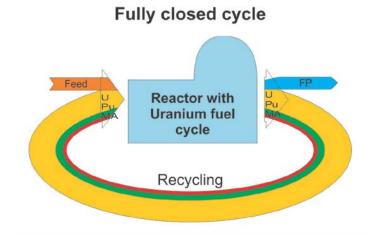
1 neutron to breed new fissile isotope from the fertile one.

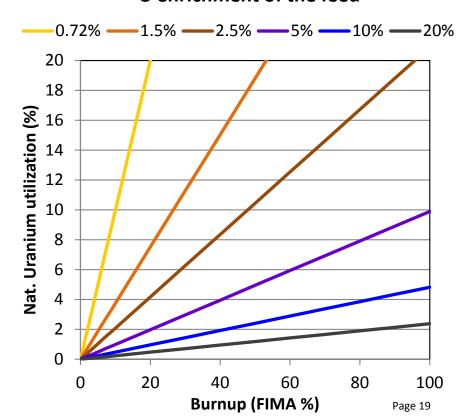
 \diamond Hence η should be higher than 2 in the respective spectrum.


- ❖ It does not accounts for ²³⁸U and ²³²Th fission
- and for different properties of secondary fertile and fissile isotopes.

Chain reaction

Fertile fuel

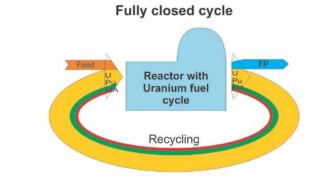

GenIV reactors = Sustainable reactors

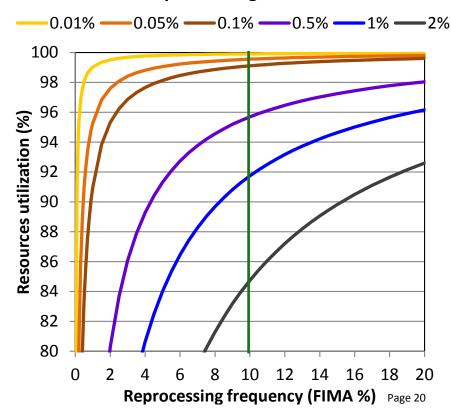


Recycling ≤ Sustainability

- Even if all actinides from spent fuel will be recycled, the utilization of natural resources can be still relatively low.
- The "make-up fuel" (US English) or actually the feed (EU English) should not be enriched uranium.
- Whenever enriched uranium is used as the feed, sustainability is strongly decreased.
- Even its 100% utilization by recycling will not help.
- Lets recall here than in ²³⁵U fueled reactor without recycling it is at maximum 0.75%.

²³⁵U enrichment of the feed




Sustainability = ²³⁸U and ²³²Th catalytic burning

- With natural uranium or thorium feed high sustainability can be achieved by recycling.
- Nonetheless, due to the reprocessing losses, it will be always below 100%.
- It depends on reprocessing method losses (L) and on the reprocessing frequency (F) (both expressed in fuel %).
- Typical fuel burnup in solid fuel fast reactor is 10% FIMA. In MSR the discharge burnup may be lower.
- Homework: please cross-check if it was derived correctly:

$$Utilization = 1 - losses = 1 - \frac{L(1-F)}{1 - (1-L)(1-F)}$$

Reprocessing losses

GenIV: Sustainability versus Safety

- Sustainability often requires fast neutron spectrum.
- In fast neutron spectrum coolant does not moderate the neutrons.
- Coolant removal or fuel compaction leads to reactivity increase.
- GFR has quite low positive void. It is, however, hard to cool in case of coolant depressurization.
- SFR has strong positive void; nonetheless, it can be minimized by neutron leakage maximization in voided core. Still, there is an issue with sodium fire.
- LFR has very strong void coefficient, but lead is not so easy to void.
- In general SFR and LFR are low pressure system and the metallic coolant has retention potential for some problematic fission products.
- MSR combines coolant and fuel in one liquid. It can be designed with negative void coefficient and fuel compaction / collection may be prevented. (moderated MSR breeder may have positive graphite temperature feedback coefficient)

Is Gen IV the last one? No, let's add some more ©

Fuel / Cycle: Sustainability*:

Activated mat.: 1t burned fuel: + byproducts:

Radioactivity:

MA=Np+Am+Cm

- ABWR
- ACR1000
- AP1000
- APWR
- EPR
- ESBWR

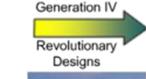
²³⁵U (U-Pu) 100-200 years

Gen III+

yes 1000kg FP 200kg Pu 20kg MA

U-Pu / closed 5 000 years

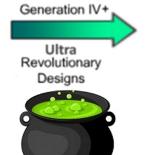
Gen IV

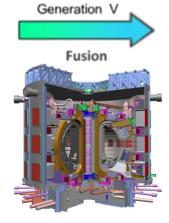

ves 1000kg FP 50kg MA

Th-U / closed 20 000 years Gen IV+

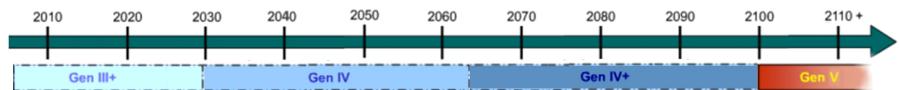
ves 1000kg FP D-T / Li 200 000+ years Gen V

ves 800kg He


15kg ²³⁷Np+²³⁸Pu



- Safe
- Sustainable
- Economical
- Proliferation Resistant and Physically Secure


Scrafa.cz

- Safe +
- Sustainable +
- Economical +
- Proliferation Resistant and Physically Secure

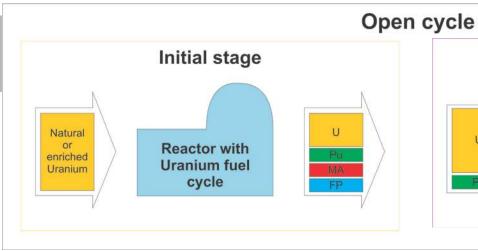
- Safe + +
- Sustainable + +
- Economical -
- Proliferation Resistant and Physically Secure

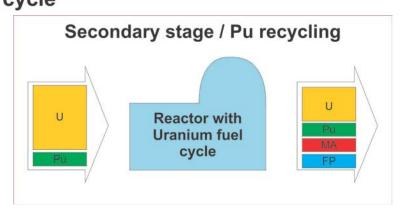
Two basic fuel cycle issues related to sustainability

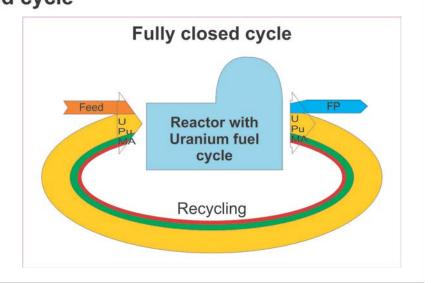
How to start it

1. Any reactor capable of burning for ²³⁸U and ²³²Th should be started by ²³⁵U or by products from ²³⁵U fueled reactor.

How to maintain it

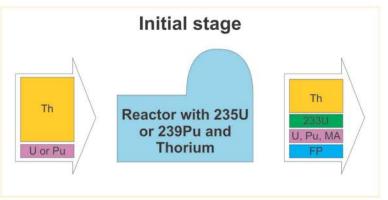

- 2. Any sustainable reactor for ²³⁸U and ²³²Th catalitic burning should be capable to operate with **equilibrium fuel composition**. (secondary fertile and fissile, tertiary fissile and fertile, etc....)
- 3. There should exist technology to regularly **separate** the **fission products** (FPs) from the fuel.

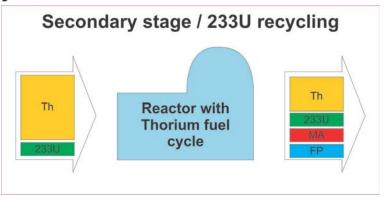

Separation of FPs is usually not possible without complete fuel decomposition. Hence, what other industries call **recycling** is called "**reprocessing**".


Initial and secondary stages & open versus closed cycle

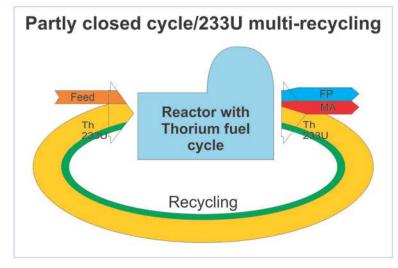
Uranium-Plutonium cycle

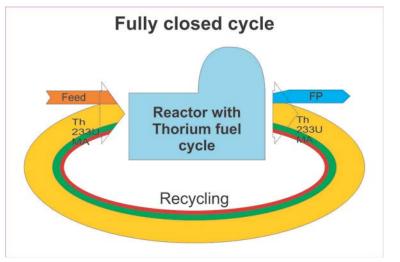
Partly closed cycle / Pu multi-recycling Reactor with Uranium fuel cycle Recycling



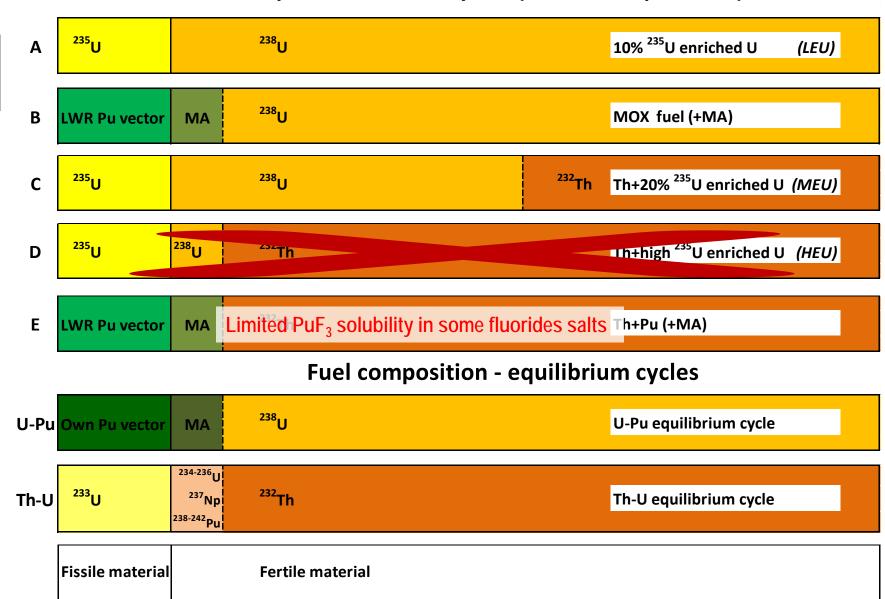


Initial and secondary stages & open versus closed cycle

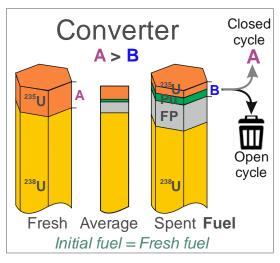

Thorium-Uranium cycle

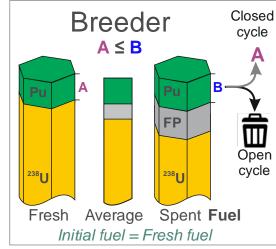

Open cycle Initial stage

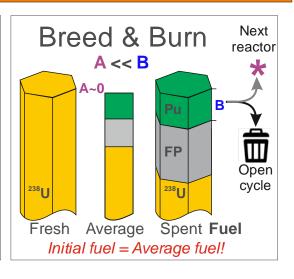
Closed cycle



Example of initial fuel composition equivalent

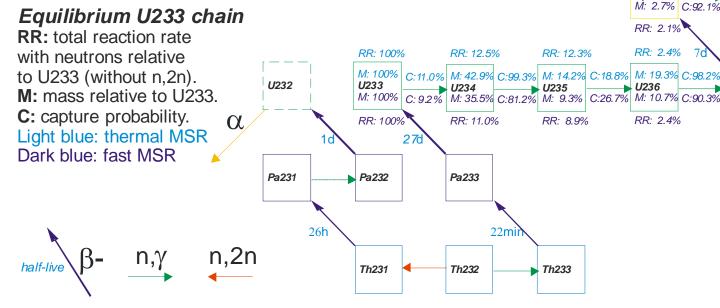

Fuel composition - initial cycles (10% ²³⁵U equivalent)

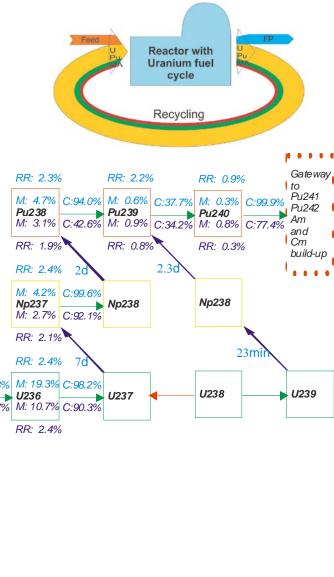




Equilibrium cycle operation – neutron economy

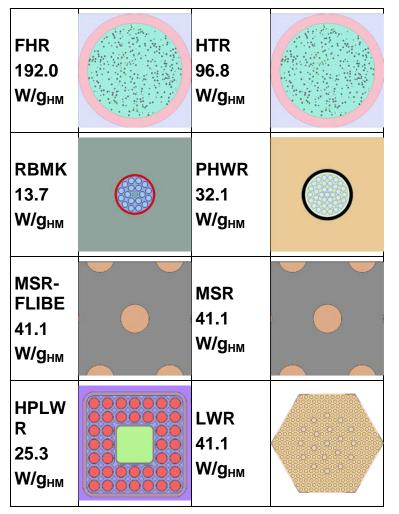
Neutron economy




- **Convertor**, e. g. PWR or IMSR, is operated **usually** in **open fuel cycle**.
- **❖ Breeder** profit from neutronics advantages only in the **closed cycle**. For Iso-breeding (EU) or Break-even (US) reactor => A=B.
- ❖ Extreme breeder can be operated in **Breed-and-Burn** mode. It can have **high fuel utilization** even **without reprocessing**.

Breeding capability – excess reactivity in equilibrium

- Breeding capability can be estimated from excess reactivity in equilibrium fuel cycle.
- If fuel cycle properties like: power (or flux), reprocessing scheme, and feed are fixed, reactor operation will converge to equilibrium.
- In equilibrium mass flows, reaction rates, and reactivity are stabilized.



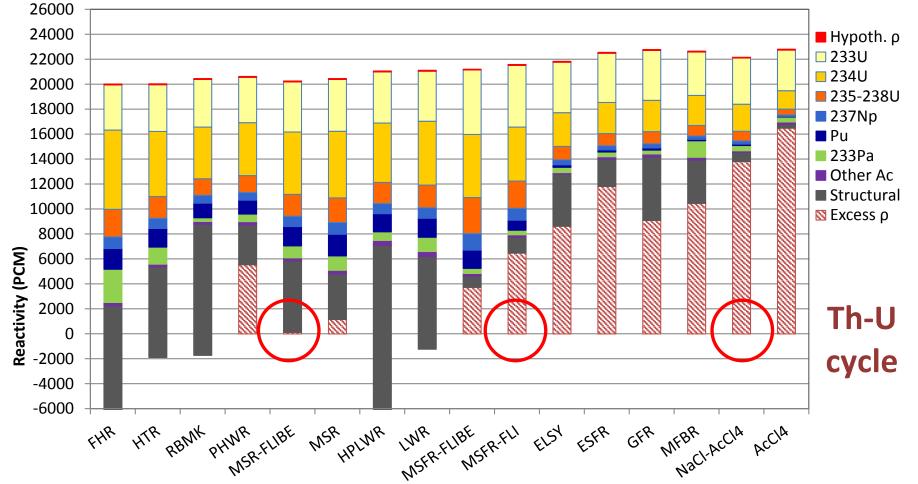
Fully closed cycle

Comparison of 16 reactors: 8 thermal & 8 fast

MSFR 41.1 W/g _{нм}		MSFR- FLIBE 41.1 W/g _{HM}	
LFR 54.8 W/g _{HM}	000000000000000000000000000000000000000	SFR 48.8 W/g _{HM}	
GFR 40.1 W/g _{HM}		MFBR 178.6 W/g _{HM}	
NaCI- AcCI4 salt 54.8 W/g _{HM}		AcCl4 salt 54.8 W/g _{HM}	

- The simplified designs were adopted as is without optimization.
- ❖If the core consists of assemblies with identical geometry but different fuel composition only one assembly was simulated.
- ❖If the geometry differs, all cases have been simulated, but only one selected is presented.

Assumptions for equilibrium cycle simulation


- Infinite lattice cell level simulation.
- Reactor specific power given by burnup in **FIMA** % (FIssile MAterial %) and **fuel residence time**.
- Neglecting fission products.
- Zero reprocessing losses (L=0).
- Continuous feed of fertile material (232Th or 238U).
- ENDF/B-VII.0 nuclear data library.
- With these assumptions we obtained equilibrium fuel composition and equilibrium reactivity.
- The excess reactivity should be high enough to compensate for: neglected reprocessing losses, neutron leakage and fission products parasitic captures.

Excess reactivity in eql. cycle for Th-U cycle

- **Excess reactivity** for eql. fuel composition quantifies the closed cycle capability.
- Comparison of 16 reactors is based on infinite lattice calculations with no FPs.

❖Th-U cycle: low ²³³U capture, power effect due to ²³³Pa capture (FHR, MFBR,...).

Excess reactivity break-down method

Neutron balance eq.:
$$k_{\text{inf}} = \frac{R_P^{total} + 2R_{n,2n}^{total}}{R_F^{total} + R_C^{total} + R_{n,2n}^{total}}$$

$$1) R_P^{total} = \overline{v} R_F^{total} \quad 2)$$

Four assumptions: 1)
$$R_P^{total} = \overline{v} R_F^{total}$$
 2) $R_C^{total} = R_C^{232} Th + R_C^{other}$

3)
$$R_{n,2n}^{total} = R_{n,2n}^{232}$$

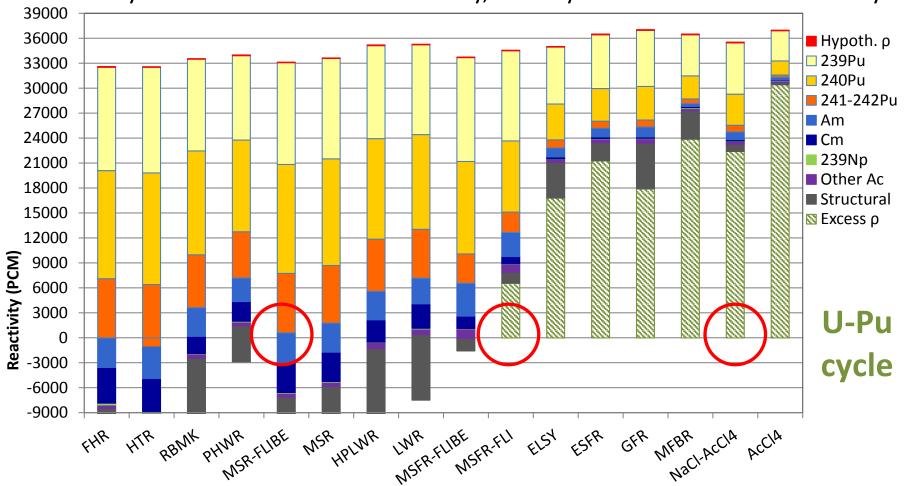
main fertile represents at least 90% of all (n,2n) reactions

Valid only in equilibrium:

4)
$$R_C^{232Th} + R_{n,2n}^{232Th} = R_F^{total} - R_F^{232Th}$$

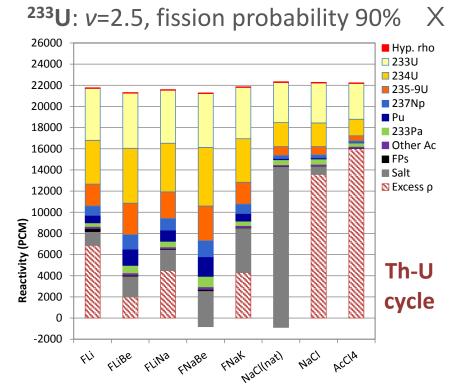
total other-than-fertile actinides destruction (total fission rate without the fertile isotope fission rate) should be in equilibrium equal to the total other-than-fertile actinides production (capture or (n,2n) reactions on the main fertile element)

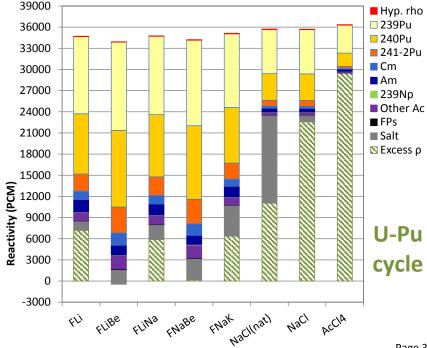
Result:


$$\rho = \frac{(\overline{v} - 2)R_F^{total} + R_F^{232}Th}{\overline{v}R_F^{total} + 2R_{n,2n}^{232}Th} = \frac{\overline{v} - 2}{\overline{v}} + \frac{R_F^{232}Th}{\overline{v}R_F^{total} + 2R_{n,2n}^{232}Th} - \frac{R_C^{other}}{\overline{v}R_F^{total} + 2R_{n,2n}^{232}Th}$$

Available neutrons Bonus from fertile Parasitic captures

Excess reactivity in eql. cycle for U-Pu cycle


- *Low ²³⁹Pu fission probability: ²³⁹Pu: 65-75% \times ²³³U: 90% => thermal reactors</sup>.
- ❖ Excess reactivity is higher for fast reactors: ²³⁹Pu: *v*=2.9 × ²³³U: *v*=2.5
- ❖U-Pu cycle has better neutron economy, Th-U cycle better neutron efficiency.



8 Fast MSR (salts) comparison - inclusive FPs

- **8 selected salts** were compared (infinite medium of fast reactor with FPs).
- ❖U-Pu and Th-U equilibrium closed cycles were evaluated (by excess reactivity).
- ❖It confirmed that for **U-Pu** cycle **chlorides** are preferable.
- The reactivity excess in chlorides may enable breed and burn mode.
- ❖Th-U cycle has two favorites ⁷LiF and Na³⁷Cl carrier salts.

Breed & Burn

A << B

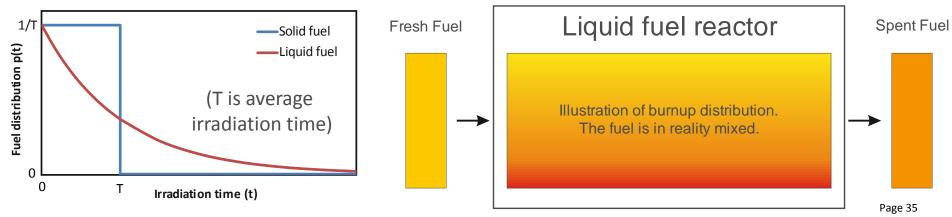
Fresh Average Spent Fuel Initial fuel = Average fuel!

FP

Next

reactor

Breed and burn fuel cycle mode

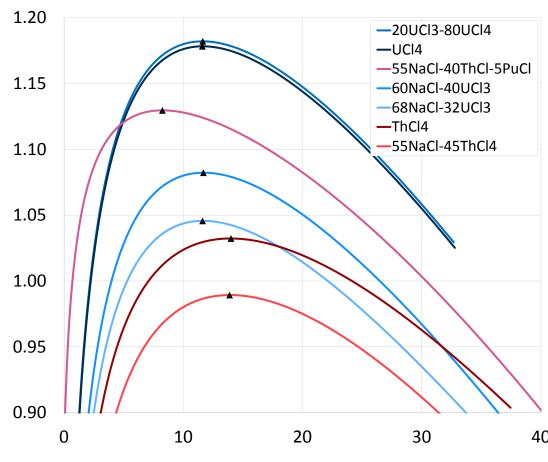

- ❖ In case of a super breeder, fuel based only on fertile ²³⁸U or ²³²Th can be loaded to the reactor.
- The fissile fuel will be produced (**Breed**) in the reactor.
- Later during its **burn**ing it will supply enough neutrons to breed new fuel from new fresh fertile assemblies.
- In solid fuel case it looks like this =>
- The situation for liquid is different. Everything will be homogenized.
- Fresh Fuel

 Solid fuel reactor

 Spent Fuel

 The state of the state of

Different burnup distributions:

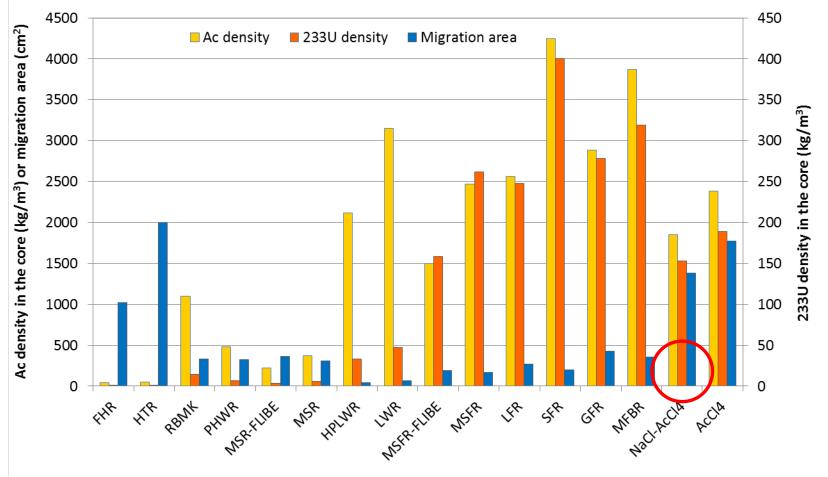

MSR in Breed-and-Burn (B&B) mode

- Method can be developed on the burnup distributions (which differ between solid and liquid fuels).
- ❖ The average k-infinity for given T can then be computed using a simple cell depletion calculation:

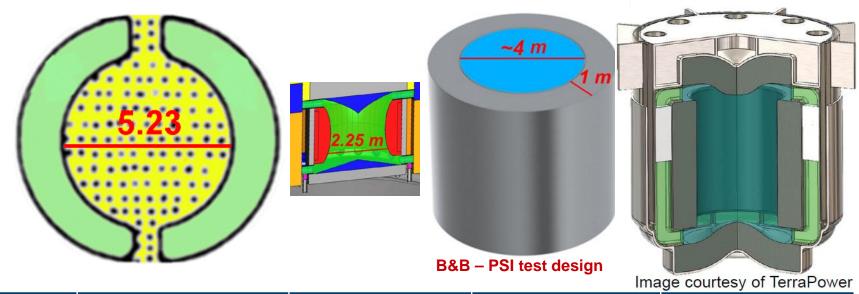
$$\overline{k}_{\infty}^{T} = \int_{0}^{\infty} p^{T}(t)k_{\infty}(t)dt$$

❖ Main results on cell level:

- B&B mode is possible only with enriched ³⁷Cl based MSR.
- U-Pu cycle is better that Th-U.
- B&B in Th-U cycle may require fissile support (e.g. LWR Pu).

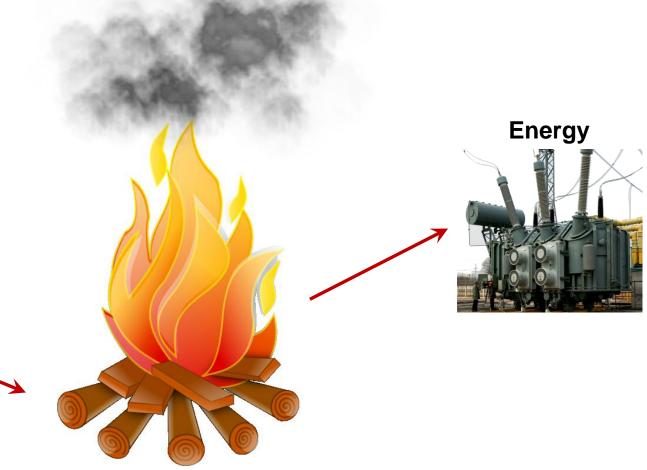

Average discharge burn-up [% FIMA] (it is proportional to average irradiation time T)

❖B&B mode represent open fuel cycle with up to 20% resources utilization.


Chlorides disadvantage: density and migration area

- Chlorides salts have lower specific Ac density and higher migration area.
- Chlorides area transparent for neutrons (absence of scattering).
- ❖ High migration area => high leakage => blanket or reflector or bigger reactor.

MSR Breed-and-Burn: core level


image country of roman even					
Concept	SOFT-1980	MSFR	B&B - PSI	MCFR	
B&B / salt	No / nat. chlorides	No / fluorides	Yes / enr. chlorides	Yes/ enr. chlorides	
Core dimensions	5.23 m	2.25 m x 2.25 m	4 m x 4 m	?	
Core volume	75 m³	9 m ³	50 m ³	?	
Blanket / cycle	None / U-Pu	7.3 m ³ / Th-U	None/ U-Pu, Th-U+Pu	None/ U-Pu	
Reflector	CaCl ₂ -NaCl & steel	Axial only - Hastelloy	Yes – lead / Enr. lead	Yes - ?	
Processing	Volatile & Soluble FP	Volatile & Soluble FP	Volatile FP only	Volatile FP +?	
Processing flow	0.25 L/s	3-8 L/day	2 L/day	?	
Cycle time	?/continuous electrolysis	6-16 years	52 years	,	
				Page 38	

Fuel: ²³⁸U or ²³²Th

Breeding reactor - in ideal case = never-ending fire

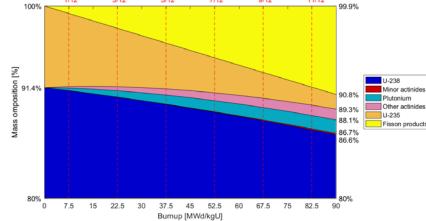
Works only if emissions (FPs) are (continuously) removed

Reactor ("catalyzed" by ²³⁹Pu or ²³³U)

Issue with closed cycle: reprocessing & fabrication

- Since FPs absorb neutrons, they sooner or later poison the reactor.
- Thus the fuel, which is highly radiotoxic, must be reprocessed, which is demanding and complicated.
- In U-Pu cycle recycling of Pu and U is technologically mastered and practically available in several countries.
- The by-products of the U-Pu, minor actinides Am and Cm emit α (heat source) and neutrons (mainly Cm). Their recycling may thus strongly complicate the fabrication of solid fuel.
- Similar technological experience as for U-Pu is missing for Th-U cycle.
- ❖ Furthermore, **irradiated Th fuel** emits more **hard gammas** from the ²³²U decay chain, mainly from ²⁰⁸Tl and ²¹²Bi.
- Recycling of **solid Th fuel** may be **demanding**.
- Liquid fuel (no fabrication) can accommodate both MA from U-Pu and ²³²U from Th-U cycles (recycling by volatilization) more easily.

Fission products sensitivity


- * Fast spectrum systems are less sensitive to fission products FPs...
- ❖ Why?
- The FPs cross-section are higher in thermal spectrum. (Isn't it valid for all cross-section, not only for FPs?)
- There is also second reason: FPs to fissile fuel ratio.
- ❖ In typical thermal burner (e.g. LWR or HTR see the figure) initial fissile load may be between 5-8%. After discharge there are usually 2% left.

❖ In fast breeder reactor (SFR) the fissile HTR fuel with initial 8% enrichment

isotopes can represent **10%** of fuel and it is **the same** after **discharge**.

The FPs to fissile ratio is thus:
5/2 for LWR and 10/10 for SFR.
(FPs replace fertile absorbers)

Hence, thermal reactors, especially burners, are more sensitive to fission products.

In solid fuel reactors the irradiation time is limited by:

- 1. Limited cladding lifetime caused by irradiation.
- 2. Fissile element load in burners (breeders can be self-sustaining).
- 3. Gaseous Fission Products (FPs) pressure.
- 4. Core poisoning by FPs neutron capture.

In liquid fuel reactor:

- 1. There is no cladding.
- 2. Breeders are self-sustaining and fuel or Th can be continuously added.
- Gaseous and volatile FPs are continuously removed form the core.
- 4. Remaining FPs are still poisoning the core by neutron capture.
- In MSR case there is not another reason for fuel reprocessing than FPs removal.

MSR fluoride salts components:

- 1. Carrier salt (LiF, LiF-BeF₂, NaF-BeF₂, NaCl, etc.)
- 2. Fertile actinides (232Th and 238U).
- 3. Fissile fuel (mainly U or Pu vector).
- 4. By-products (MA).
- 5. FPs.

FPs removal

- There is not a simple method how to separate FPs from the fuel salt.
- Furthermore, even if several methods are combined, FPs are usually the last separated component.
- Practically in every MSR design study or simulation, the spent fuel salt is removed from the core for reprocessing being immediately replaced by the same cleaned salt.
- Since the whole fuel salt mix must be removed from the core, the question is what should be recycled, why, and for what price?

Motivation for salt recycling and recycling strategies

Why to recycle salt components:

- From a reactor physics point of view, it is important to recycle ²³³U
 or ²³⁹Pu as the main fissile elements; the other components are not
 substantive.
- 2. From a **sustainability** point of view, it may be important to recycle the main fertile elements **Th** or **U** and possibly some rare elements (**Li, Be**).
- 3. From **economy** point of view, it may be interesting to **recycle all** components. Nevertheless, it will depend on their price and on the **reprocessing costs**. In some cases their **direct disposal**, e.g. by vitrification, **can be cheaper**.

Four possible basic operation with the liquid fuel:

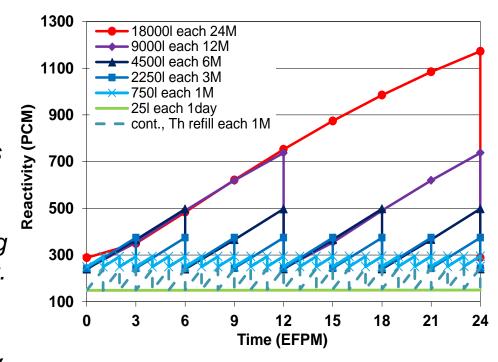
- Salt removal from the core.
 (no direct impact to the core neutronics)
- Salt cleaning inside of the core. (direct impact to the core neutronics)
- 3. Salt cleaning or reprocessing outside of the core. (no direct impact to the core neutronics)
- Salt refilling into the core.
 (direct impact to the core neutronics)

Recycling strategies:

Salt removal from the core	Removed salt share	Fissile fuel recycling (U-vector)	Fissile fuel return after reprocessing	Carrier salt cleaning	Carrier salt return after reprocessing	Reprocessing waste immobilization
Continuous or Batch-wise	From 0.1% to whole salt volume	In-situ or Ex-situ	ASAP or with months or years of delay	In-situ or Ex-situ	ASAP or with months or years of delay	In-situ or Ex-situ

Two extremes: on-line recycling – everything in-situ and ASAP, and off-line recycling – everything ex-situ and with years of delay.

Comparison of 7 similar salt treatment schemes (Th-U)

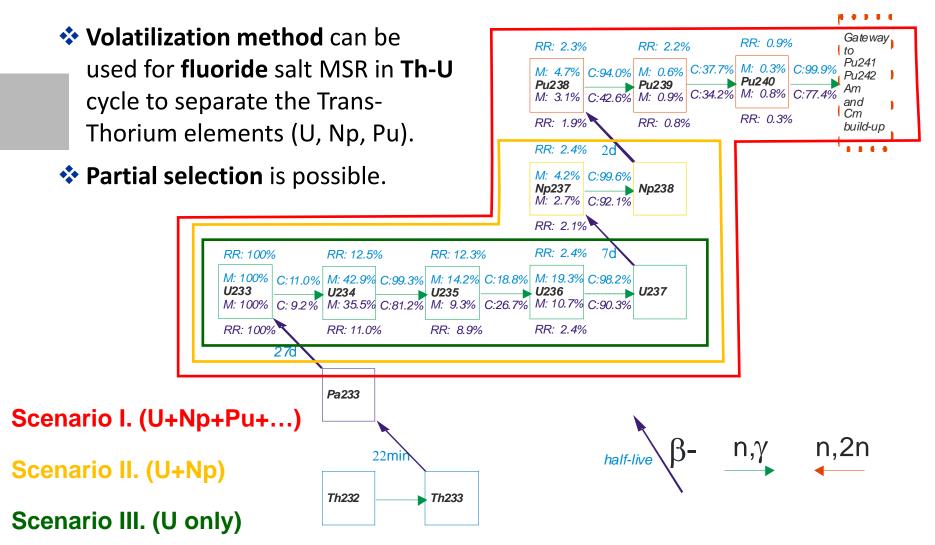

Assumptions:

- Reprocessing unit capacity 25 I/day.
- The volume for reprocessing is taken from core (cases 6 and 7) or from temporary storage tank (cases 1-5).

Main conclusions:

- Reactivity swing is positive and proportional to the reprocessing time. (decreasing Th mass = +2.2 PCM/kg; increasing FPs mass = -2.0 PCM/kg)
- 2. Continuous **Th refilling** can be used as **reactivity control**, independently off the selected salt clean up treatment.
- 3. The strategy with **longest** reprocessing **time** has **lowest average FPs content**. (it has also highest breeding gain)
- 4. Its disadvantage is the biggest salt volume (initial load) necessary for reactor operation.

Strategy Nr.	Salt clean-up from FPS	Th refilling	Min. salt volume for operation
1	18000l each 24M	each 24M	36 m ³
2	9000l each 12M	each 12M	27 m ³
3	4500l each 6M	each 6M	22.5 m ³
4	2250l each 3M	each 3M	20.25 m ³
5	750l each 1M	each 1M	18.75 m ³
6	25l each 1day	each 1day	18 m ³
7	continuous	each 1M	18 m ³

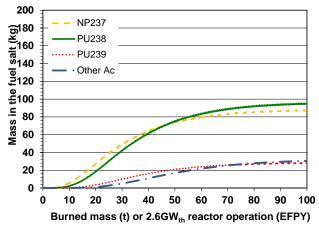


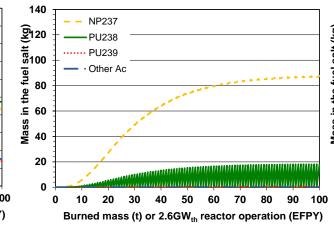
Reactivity swing for 7 recycling strategies

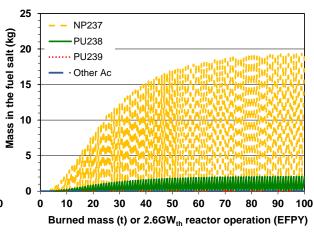
Krepel, J. at. al., Comparison of Several Recycling Strategies and Relevant Fuel Cycles for Molten Salt Reactor. ICAPP 2015 Nice

Combined recycling: fissile in-situ ASAP, the rest ex-situ

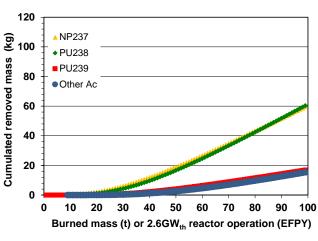
Assumption for the simulation: repetitive application of reprocessing: U 0% other Ac 1% loss. FPs 99% removal efficiency are replaced every 12 months by Th.

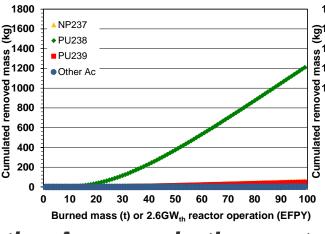

Combined recycling: Fissile in-situ ASAP, the rest ex-situ

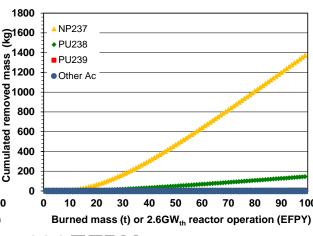

Fast spectrum MSR core


Scenario I. (U+Np+Pu+...) Scen

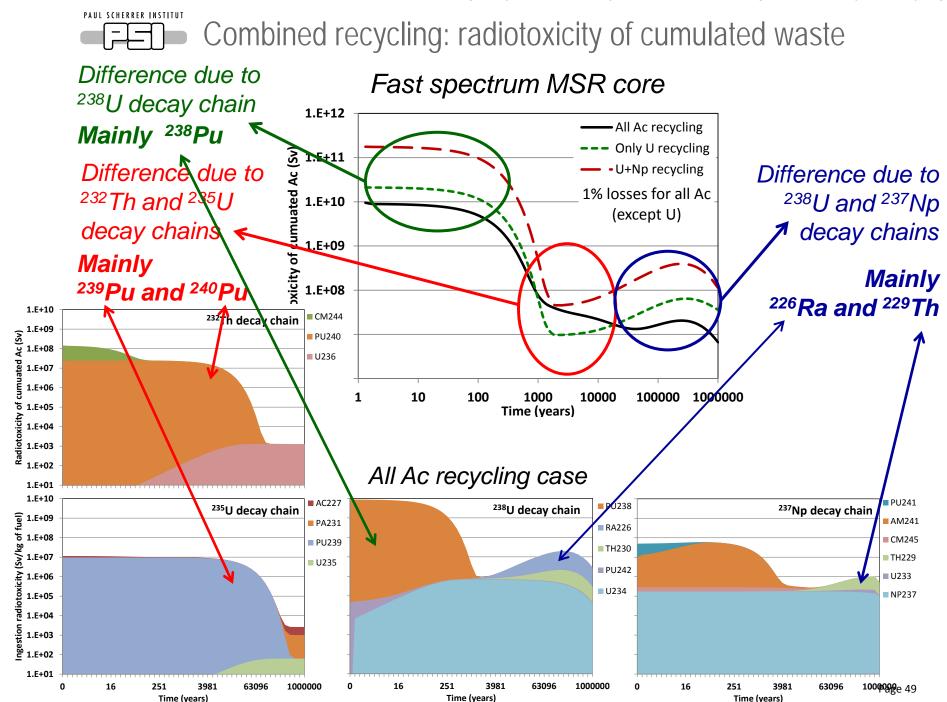
Scenario II. (U+Np)


Scenario III. (U only)





Ac mass in the core



Cumulative Ac mass in the waste 100EFPY

Krepel, J. at. al., Molten Salt Reactor with Simplified Fuel Recycling and Delayed Carrier Salt Cleaning. ICONE 2014 Prague

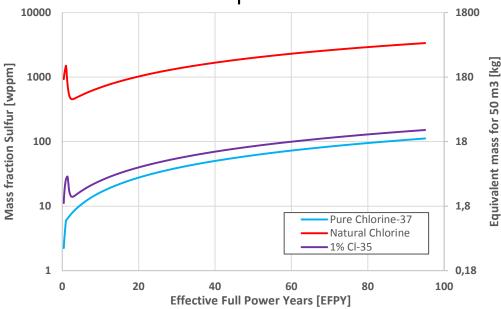
- Sustainability of ²³⁵U fueled reactors is low.
- 232Th and 238U can be burned in fast (232Th possibly also in thermal) breeders; with fuel recycling high sustainability may be achieved.
- Fast spectrum breeder with solid fuel may have safety issues.
- These issues may be eliminated by liquid fuel.
- The liquid fuel state also provide fuel cycle flexibility.
- Several cleaning, reprocessing, and refilling / removing techniques may be applied to liquid fuel.
- Solubility and other thermochemical properties may be the limiting factor.
- MSR may combine sustainability with acceptable safety, economy and proliferation resistance.

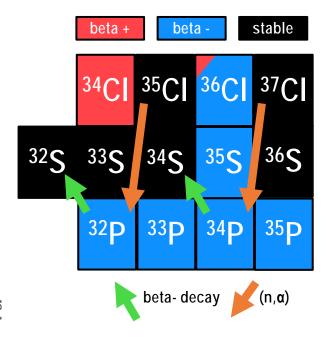
Wir schaffen Wissen – heute für morgen

MSR is a very promising energy source.

It can combine unparalleled safety features with high fuel utilization.

It can also provide us enough time for mastering of the nuclear fusion!




Sulfur production in Chloride MSRs

- Sulfur embrittles steels & nickel alloys
- Main production paths:

35
Cl + n \rightarrow 32 P + α \rightarrow 32 S
 37 Cl + n \rightarrow 34 P + α \rightarrow 34 S

Enrichment in Cl-37 substantially decreases Sulfur production.

Investigation on the speciation of Sulfur were carried out at EIR in the seventies.

[1] IANOVICI, E., TAUBE, M., Chemical behaviour of radiosulphur obtained by 35Cl(n, p)35S during in-pile irradiation, J. Inorg. Nucl. Chem. 37 12 (1975) 2561.