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!  Physics involved: time-scales, complexity 

!  Coupling strategies (pro/cons) 

!  MSRE application 

!  MSFR application 

!  Concluding remarks 



!  Capabilities needed 

◦  Moving fuel -> moving 
precursors 

◦  Complex geometry 

◦  Three-dimensionality 

◦  Heat transfer, (two-phase) fluid 
flow, stress analysis, neutronics 

◦  Temperature feedback effects 
on cross sections 

◦  Voidage feedback from 
bubbling and on effect flow 

structure 

Fluid 
flow 

Bubbling 

Precursor 
movement 

Thermal 

Neutronics 

Turbulence 

Cross 
sections 



!  Two types of transients are considered 

◦  Fuel circuit transients 

◦  Transients involving the emergency draining tank 



!  Main transients chosen 



Consider full transport model as example 
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Diffusion is a (much) cheaper alternative 

Magnitude of the problem 
-  Mesh: 10000 elements 

-  Angle: 24 in practice for MSR 

-  8 precursors 

-  Space: Linear polynomials ->4 basis functions 

-  Energy: pm 10 groups 

           No dof: pm 10 Million (+ time stepping) 

 



Time scales relevant to the neutronics part of the 
problem 
 
-  Prompt time scale 

-  Reactor period 
 
Wide range of time scales 
 
!  Usually no need to resolve prompt time scale 
!  Most neutronics codes are implicit in time (or use 

Prompt Jump Approximation) 
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!  Cross sections depend on space and time through 

temperature and composition 

!  Mapping needed of the system select proper xs set (in 

practice 20-1000 sets are used) 

!  Each mesh element corresponds to specific material 

!  Libraries need to be generated (Scale, Serpent, etc). 

Around 10 groups sufficient for MSFR 

!  XS need to be interpolated wrt temperature (either for 

each cell or for each material region using an average T) 

!  Density dependence as well (bubbling) 

!  XS generation somewhat of an art 
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Magnitude of the problem 
-  Mesh: 40000 elements 

-  Space: Linear polynomials ->4 basis functions 

-  5 main flow variables + turbulence model 

-  No dof: pm 1 Million (+ time stepping) 
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MSFR: turbulent flow 
Boussinesq approximation reasonable in most cases 



We deal with a turbulent flow with a large variety of spatial and 
time scales 
 
-  Large eddy turnover 

-  Cascading (decay)  

-  Kolmogorov time scale 
 
!  We use RANS models where we do not resolve the small 

scale turbulence 

!  For stability reasons, turbulence production/dissipation 
terms usually handled implicitly 
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Important properties: 

!  Conservation 

!  Speed of interpolation 

Hierarchic meshes combined with Galerkin 
projection satisfy both these properties. 

Meshes for each physics module not the same 

 => interpolation required 

CFD mesh Neutronics mesh 

Shared 
master-mesh 



 

!  Easy to implement using existing (black-box) codes 

!  Cheap on a time step basis 

!  At most first-order time accuracy 

!  Stability may be issue; though difficult to analyse 

!  Times at which to data needs exchange depends on 
physics and time scales 

Physics 
code 1 

Physics 
code 2 

Physics 
code 1 

Physics 
code 2 

Physics 
code 1 

Physics 
code 2 
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!  Still easy to implement using existing codes 

!  Iteration may be expensive 

!  Time accuracy dictated by that of the individual codes 
(full potential can be achieved) 

!  Coupling no longer dominates stability 
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Physics 
code 1 

Physics 
code 2 

!  Sequential exchange of data between 
codes is formally a Picard (fixed-point) 
iteration 

!  Convergence in general is slow (linear) 
!  Easy to do (and often done!) 

u − f (u) = 0→ u
k+1

= f (u
k
)

Variations 
◦  Anderson acceleration: keeps a series of iterates 

and finds optimal combination 

◦  Aitken acceleration: Keeps 3 iterates and 
combines to new 

◦  … 



 

!  Quadratic convergence close to solution 

!  Requires Jacobian (intrusive!), mostly unavailable) 

!  Large linear system in each Newton iteration  

F(u) = 0→
J∆u = −F(u k )
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!  Innovative idea combining: 
◦  Newton iteration for the non-linearity 
◦  Krylov method for the linear system in each step 
◦  A smart trick 

!  BUT: How possible without Jacobian? 

!  Krylov methods require matrix multiplication only: 

!  JFNK only requires residual F 

!  Preconditioning for efficient Krylov is essential (usually 
Gauss-Seidel is used: physics preconditioning) 

 

Jv

 

Jv ≃
F(u + εv)− F(u)

ε



‘Exact’ solution Physics 1: left half 

Physics 2: right half 

Traditional coupling 

artifacts near coupling location 

JFNK 

Work of Dion Koeze (BSc thesis, 2009 



!  JFNK stable and efficient 

!  Relatively easy problem (1-2 Newton steps) 

!  Some hick-ups when using large external reactivity 
with (too) large time-steps 

Reactor core 
 

‘Point-Kinetics’ 
Fission heating 

Doppler feedback 

 

HX 
 
 q = h∆T

External reactivity transient y





!  Developing calculation scheme for MSR 
◦  3D 
◦  time-dependent 

◦  feedback by coupling neutronics and thermal 
calculations 
◦  Model the MSRE 

◦  Keep programs general 

!  Assumptions 
◦  Fuel velocity field is input 
◦  Flow parallel to the axis of the core 



Fuel-graphite lattice 

Control rods 

Downcomer 

Fuel salt 

!  Approximating cylindrical reactor in X-Y-Z geometry 

!  8 group cross section library by SCALE 

!  Internal albedo boundaries for control rods 
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Surface: Nusselt 
correlations yield heat 
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!  Fuel: Heat convection (vertical) 
!  Moderator: Heat conduction (3D) 

!  Individually calculating each fuel channel (1150 channels) 

!  Bulk temperatures for fuel channels 
!  ~1.5 million control volumes 
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!  Explicit scheme 
!  Exchange of 

power and 
temperature 

!  THERM and 
DALTON 
calculate each 
step separately  

!  Communicate 
afterwards 



!  Typical fluid-fuel  

   transient 

!  Power: 1W  

   no feedback 

!  Beginning: 

◦  fuel stationary 

◦  keff = 1 

!  Starting fuel pump 

 



Precursor 
concentration 
group 6 
(longest T1/2) 



power 8.59 MW 



power 8.59 MW 



Graphite blocks 

Fuel channels 

High resolution calculation to determine the surface 
temperature of the graphite and the heat transfer 



Horizontal cross-sectional of temperature fields 
at the middle of the core 



!  Debris gets into primary loop 

!  Blocks some of the fuel channels - mass flow reduced 
by 80% 

!  Total mass flow maintained 

!  Power reduces: 8.59 MW → 8.32 MW 



Graphite conducts the heat 

from blocked channels 





Modeling: 
 
!  No heat transfer in blanket, 

reflectors and absorber regions 
!  Fresh fuel 
!  No flow in blanket 
!  Complete rz models for 

neutronics and heat transfer and 
fluid dynamics 

!  Properties from benchmark 
description (except ‘Boussinesq’ 
and some simplified materials) 
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Computational mesh for neutronics 66x78 
 
CFD mesh twice as fine in each direction  
(132x156). Has proper width near walls  
for correct behavior of turbulence model, 
i.e. y+ values (friction, turbulence) 
 
Meshes overlap for simplicity where CFD  
dictates refinement near walls 
 
Interpolations required for data transfer  
between codes (conservation issue) 

 



SCALE 

DALTON-
MSR 

HEAT 

XS-MIXER 

lib lib lib 

( )T r ( )Σ r

( )P r

( ), ( )
t

u µr r



 
 
"  Main recirculation loop: 

disadvantage for 
temperature field 

"  Small secondary flow in 
corner regions 
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"  Long lifetimes: homogeneous distributions and decay.  
"  Short lifetimes: local balance between production and decay. Only 

slight shift in spatial distribution. Complete decay in down comer. 
"  Intermediate lifetimes: mixed … 



"  Rapid initial decay of flow rate within first 5 seconds 



"  Flow almost steady state after 130 seconds 
"  Flow rate decreased by factor 6 compared to steady-state 
"  Pure natural convection with different structure of recirculation 

zone 
"  Complex interplay between flow and buoyancy 



Sequence of events 
 
"  Reactivity is instantaneously added by increasing U-233 density 
"  ‘Prompt jump’ occurs, where feedback limits the growth 
"  Delayed effects from precursors 
"  Complex interplay of hot and cold fluid exiting and entering the core 

region cause some further transients until final steady state is 
reached 

"  The final power in steady state is slightly larger than the initial 
power to compensate for the external reactivity 





!  High-fidelity code systems are available for MSR 
systems (Delft, Milan, PSI, CNRS, KIT, etc) 

!  Realism of the simulations is continuously increasing 
(geometric complexity, physics) 

!  Indispensible tool for safety analysis of MSR 

!  Still immense computational problem 

!  Future holds more 
◦  Chemistry coupling 
◦  Structural analysis 
◦  … 
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