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* Molten salt systems (MSR) have both static and
dynamic properties different from those of
traditional reactors

* Objective of this lecture: to show the new and
interesting physics that the MSR systems exhibift,
through investigating the statics, kinetics, dynamics
and neutron noise diagnostics of such systems

* Solutions in simple models give insight into the
physics/neutronics of MSRs.
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* To this order, closed form analytical solutions are
derived for both the static and the dynamic
equations.

* The dynamic transfer properties of MSR are
investigated

* The results for the dynamic case show the effect of
stronger neutronic coupling and more spatially global
response to localised pertubations

* At the same time the kinetic approximations become
more complicated, and some intriguing theoretical
questions arise.
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Definition of the model used. Static and time-
dependent equations

. Discussion of the non-adjoint property of the static
MSR equations. Construction of the adjoint

. Interpretation of the various terms of the integro-
differential form of the static equation. Some
limiting cases and corresponding simplified models

. The dynamic equations in the frequency domain: small
fluctuations (neutron noise). A primer in power
reactor noise.

. System properties: the kinetic transfer function
(Green's) function in various MSR models

Chalmers University of Technology
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6. The point kinetic approximation and the point kinetic
component

7. The neutron noise in an MSR, induced by propagating
perturbations

The material of this lecture is largely collected from Chapter
5 of the newly published book

“Molten Salt Reactors and Thorium Energy”, Ed. Thomas
Dolan, Woodhead Publishing Series in Energy, Elsevier, 2017
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Molten 3alt Reactors is a comprehensive reference on the status of molten salc
reactor (MSH) research and thorium fuel urilization.

There is growing awareness thar nuclear energy is needed to complement
incermittent energy sources and to avoid pollution from fossil fuels. Light warer
reactors are complex, expensive, and vulnerable to core melt, steam explosions, and
hydrogen explosions, so betrer technology is needed. MSHs could operate safely
at nearly atmospheric pressure and high remperature, yielding efficient elecerical
power generation, desalination, actinide incineration, hydrogen production, and
other induscrial heat applications.

Coverage includes:

+ Maotivation -- wiy are we interesced?

+ Technical issues — reactor physics, thermal hydrawlics, marerials, enviranment, ...

- Generic designs -- thermal, fast, solid fuel, liquid fuel, ...

« Specific designs — aimed at elecrrical power, actinide incineration, thorum

utilization, ...

« Worldwide activities in 23 countries

- Conclusions.

ABiau3z wnuoy)
pue si0peay }|es ualjow

This book is a collaboration of 58 authors from 23 countries, written in ™
cooperation with the Incernational Thorium Moloen Salt Forum. It can serve as a
reference for engineers and scientists, and it can be used as a textbook for graduate

students and advanced undergrads.

Folten Salt Reactors is the anly complete review of the technology currently
available, making this an essential text for anyone reviewing the use of M3Rs and
thorium fuel, including students, nuclear researchers, industrial engineers, and
policy makers.

Professor Dolan has worked on nudear technology and international relations
issues for three universities, five national laborarories, and in China, India, Japan,
Korea, and Russia. He has worked in induscry (Phillips Pecroleum) and served
as Physics Section Head ac the International Aromic Energy Agency in Vienna,
where he facilitated international cooperation on research reactors, low energy
accelerators, nuclear instrumentation, and nuclear fusion research, including
organization of the semi-annual IAEA Fusion Emergy Conferences. He has
published rextbooks on Fusion Research (Pergamon 1982) and Magnetic Fusion
Technology {Springer 2013).

Cawer pietire: Generle mollen salt rescior diagram, showtng graphite core (upper lefi ],
Juel pabes (yelow], drain tanks (lower left), Intermediate salt loop (center), and energy
conversion spitem [right)l From Alvin Welnberg, Oak Ridpe National Laboratory, 2004,

uejeq

Edited by Thomas ). Delan

158K B7E-0-08-101126
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@ One-dimensional core,
dimension H = 2a, time of
X 4 passage 74 = H/u

@ Extra-core piping, length L,
: time of passage 7, = L/u
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Fuel velocity = u

Core height: H T, = core transit time

External loop: L, 7, = loop transit time

Total length: T=H+L: 7=2 total tr. time

u

Chalmers University of Technology
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DV G, () + |72 (1=8)-% 1§ (2) + AC(2) =0 ()
w2 150 (2) = B 6, (2) = 0 @)
Boundary conditions:
¢ (2=0)=¢,(2=H)=0 (3)
C(0) = C(H)e (4)

Delayed neutron precursors do not disappear from
the static equations.
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Egs (1) and (2) can also be written in a matrix form as

I DV*+[vz (1-5)-Z ] A N2) _=
—pVE uv+d | C |
- 54 h _ (5)
_M 9(2) —0
" C(2) |

where the matrix M is defined by the first row.

10
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% 0P(2,1) = DV2¢(2,t)+ [sz(l —0)— il t)]gb(z, t)+ \C(z,t) (6)

0C(z 1) 4 uaC(z, t)
ot 0z
Boundary conditions:

= BVE #(z,t)— AC(z 1) (7)

¢z =0,t)=¢,(2=H,t)=0 (8)

C(0,t) = C(H,t —7)e "

)
This latter equation will make it difficult to define a

dynamic adjoint function (see later) -
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The MSR equations are not self-adjoint even in 1-group

diffusion theory:
DV2+[z,(1-p)-%,] A
—pBVE u-v+A4

K2

| C(Z) —

W2

el C( Z) =

=0 (10)

Then, for arbitrary functions ¢,C,4',C" where Cand C'
fulfil the same boundary conditions, one has

9(2)

‘rc’rM
[¢",C] C (2

#( [¢,C]M

#(2)’

. C (Z)T —

(11)

where the () sign stands for integration over the

reactor volume.

12
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For being self-adjoint, one should have
L.H.S. - R.H.S =0

The M, term fulfils this condition. However, in general

dC(z) _ . ) dc*‘(z)} o,
dz dz

(CM,, C)—(C M, C")=u| {C* (2)

To have this term to disappear, similarly o the angle-
and/or energy dependent transport equation, one needs
to define an adjoint operator, and different boundary
conditions for the adjoint precursors.

13
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DV? - B)- _ ECE
+hZ,(1-p-2,1 4 72\ _ul 2@ 2o 12
—ﬁVZf Uu-v+A4 L C(2) L C(2) J

DV 42, (1-A-21 -BE, | 4@ |_yi| 9@ |_, 3
A uv+i | C@  C'@

Boundary conditions:
' (z=0)=¢'(z = H) =0
L

+A

C'(0)=C'(H)e * =C'(H)

(14)

e—i—)\Tl (15)

14
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<[¢T,CW‘]M #(2) ><[¢,C]M #(2)" > (16

; C (2) i C (2)!
L.H.S.—R.H.S. =
! j {C(z) dc” (Z)+c '(2) dciz)} fc@c'@] =
u| C(H)C'(H)-C(0)C"(0) | = (17)

u[ C(H)C'(H)-C(H)e*"C"(H)e™" |=0
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There is one important difference compared to the
traditional transport equation. There, the adjoint
boundary conditions are formulated (for two opposite
directions than those for the direct flux) at the same

space point at the same time.

This is not valid for the MSR case. From (9), (15) and (17)
it is seen that they express a relationship at different
points at different times. This makes the definition of
the adjoint function in the time-dependent case

impossible.

16
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Eliminating the precursors by quadrature, one obtains
the integro-differential equation

Vg (2) + Bg (2) +
A
N _szf —)\T H , A Z z'i
REERN fe ug,(z")dz'+ [e ug,(z")dz'|=0
Du |4
= 0
v (1—0)—X%
B’ = 1=p)-=, .

: D 2a

Note that only the full recirculation time T appears in
the equation.

17
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V'6,(2) + By, (2) +
A A
A — )\ i
2 M
+Ae g - [e ug(z"dz'+[e ug(z")dz'|=0
Du |{_,—AT
= 0 0
/BVEf 6_)\7- H __(Z_Z,) / / o __(Z_Z,) / /
C (2)= - 1_€ATJ; SR O (2 )d2 + e ¢,(2')dz

18
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0C(z,t)
Ot

C(z,t) = ﬁysz; e Bz, t)dt!

= pr2 ¢(z,t) — AC(2, 1)

In the stationary (tfime-independent) case:

Cy2)=pvs, [ &g ()’

19
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Neutrons generated at time t' < ¢ were born at
w— "y — u(t—t')

Hence, substituting

dit'= dz'/u; t—t'=

= % f (2)dt" =

Y y P
C (z)= E ff e v )gbo(z’)dz’

20



CHALMERS Chalmers University of Technology

Taking into account that the precursors do not move on
an infinite long line, rather they recirculate, and they are
only generated in the core between O < z < H, we need to
break up the infinite integral to sums of finite integrals
with the corresponding time delays:

H —2(-2) —nm g 2 2ad)
Zf ¢, (2')dz +f0 e " ¢ (z)dz

ﬁuE

The different terms in the sum correspond to the once,
twice, three times recirculated precursors

21
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Viovir
But this is the same as what we get from the MSR
equation

6V2f

u

Co(2) =

€ _=AT —2)\7' —3)\7‘ = —NAT
1 . = _|_ e Z
— € 1
6”2 S H —é(z—z')—n)ﬁ 2 —(z—z
C (z)= ! f e dz' + f 2
(2= — 2 0
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V¢ (2) + B¢, (2) +
A
Aozl A A
S e —)\7' H 2 7 AIAS
1o il b fe U@, (2 dz'+fez up,(z")dz'|=0
Du | L 0
For L = co (7 = o0): the first term can be
neglected
A Z B
V2¢O(z) + ngbo(z) %u fe )uqbo(z')dz' =4

0

Does not lead o much simplifications. Good

for some conceptual studies. -
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V¢ (2)+ B¢, (2)+
A
ool A A
U Aﬁyzf _)\T i | o NI | —
+e f 4 ud,(z)dz'+ [e ug,(z")dz'|=0
Du = 0

For u= oo (7 = 0) : the second term can be

neglected

D
V0,2 + By () + ot [ 9(a")dx' = 0

Analytical solutions exist for both the static
and the dynamic problem.
These equations are also self-adjoint. o
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Case | ulem/s| | 7¢ s T Ap [pem]
(a) 0 — oo | 1.00000 0
(b) 0.1 | 1000 | 0.99997 —2
(c) 1 100 | 0.99868 —132
(d) 2 50 | 0.99736 —205
(e) 5 20 | 0.99587 —415
(1) 10 10 | 0.99543 —459
(2) 50 2 | 0.99526 —470
(h) — — 0 | 0.99526 —470

Chalmers University of Technology
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77 a
Vo (z)+ B¢ (z)+ ?0 aqﬁo(az Ndx' =0
vy (1— ) — T . 2.
T RN Y
i D 2a . D
Solution:
B*D

¢ (z) = AlcosBx —cosBal]; C =A g\ cos(B,a) = const

Criticality equation

2
Bg cos B a + 2370 cos B a — TZ“ sin Ba =0

0

26
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The full integro-differential equation has a compact
analytic solution, which can be seen if it is converted
into a pure differential equation:

m A n | A /BVZ
B (2) + =9,(2) + By, (2) + —(B) + —5)y(2) = 0
Characteristic equation:
23
k3+3k2+B§k+3(B§ | o L)y=0
U U D

On physical grounds we expect

ko=a+if; k=1

1,2 3

27
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¢, (2) = A e sin(Bz) + A e* cos(Bz) + Ae”

Two coefficients can be eliminated by the boundary
conditions:

¢,(z) = Ale™ sin Bz(e” — e cos BH)
— e sin BH(e”* — e** cos 32)]

Or, in the x-coordinate system, in the reactor centre:

6,(a) = Afe” cos(z) — e " cos(Ba)e” -
— cot(Ba)tanh[(a — v)a][e™ sin(Bz) + e sin(Ba)e™ ]}

28
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Substituting the solution back into the original equation
gives the criticality condition. This can be written
symbolically as

23: _|_ 1 (e(an+)\/u)H - 1)
Sy, )\ / U e’ —1

In reality this is much more complicated, because the
relationship between the A has to be used explicitly.

29
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23
k3+3k2+B§k+3(B§+ﬁ 5)=0
U Uu
= k’+ B’k =0, o = 7y =G

Then the full solution will revert to that obtained before

¢,(2) = Afe™ cos(Bz) — e cos(Ba)e™ —
— cot(fa) tanh[(a — y)al[e*” sin(fz) + ¢ “ " sin(Ba)e™]}

= ¢,(z) = A(cos B.x —cos B a)

30
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* Why would one be interested in neutron fluctuations
and neutron noise in an MSR?

* Because neutron noise diaghostics has proved to be
very effective for surveillance of the operation of the
existing reactors:

- early discovery of anomalies
- measuring operational parameters in a non-intrusive
way

* There are reasons to believe that the same methods
would be just as useful in an MSR
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* Technological processes in the core (vibrations of
control rods, boiling of the coolant in a BWR etc)
influence the neutron distribution -> power reactor
hoise.

* These processes can be diagnosed by analysis of the
induced neutron noise in a non-intrusive way during
operation.

* This is achieved with a combination of core physics,
advanced signal analysis and inverse methods.

* Swedish work has been performed in collaboration
with the power plants and the safety authority.
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The beginnings (Oak Ridge, 1969-70)
Vibrations of a faulty control rod in the HFIR
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Fig. 4. Change in HFIR neutron-fluctuation spectrum
as a result of rod bearing failure during fuel
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Control rod vibations in the Paks-2 PWR, Hungary, 1986

- 34 -

Rod #4,
excessively vibrating

@ SPND Strings Used in Noise Measurements

@ Control Assembly of Bank 6




CHALMERS Chalmers University of Technology

Core-barrel vibrations (Palisades, USA)

"--ﬁ________-_____._____,_-—'
External detectors
\ - ——)
—

Gamma therm
Movable detectors
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Swedish example:
Local BWR instability in the Forsmark 1 BWR, 1998

Tirme= 0.00 =

15
% 10

—
'

=
2

1
—
2

Meutron noise (n.cm?.s71)

1
2
L

10

C. Demaziere
Chalmers University
of Technology
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The Forsmark-1 measurement, 1998

LFPRM signals, level 4, time= 0 =

C. Demaziere
Chalmers University g ..
of Technology b s 2
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A1 00 (in bass 10 log scaled (17

4
10 % * % * 33
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L
E L ¥ »* L 3 *
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J coordinste (1)

Fig. 2.14 Result of the localisation algorithm in the Forsmark-1 case (local instability
event). The unseated fuel element is marked with a square, and the noise source identified
by the localisation algorithm with a circle; the detectors that were used in the localisation
search are marked by white crosses, whereas the detectors that were not used are marked
by black crosses.
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LPRM 181-182 phase LPRM 181-182 coherence
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RN Y

% aqsgz, t) _ Dvee(z, 1)+ V21— B) = 2,(5.8)|¢(2,t) + AC(z,t)

0C(zt
2 (zH)=2 (2)+0Z (z1); Hzt)=9,(2)+¢(z])
C(zt)=C,(2)+C(z1)
Linearization: neglecting o0X_(z,f)x o¢(z,1)

=Pz #(zt)— AC(Z1)

For details, see Pdzsit and Demaziere in the Nuclear
Engineering Handbook, Edited by D. Cacuci, Vol. 3.,

and the Mathematica notebook, from the SAMOFAR

web page. -
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Substituting the splitting of the quantities, neglecting second
order terms, after a Fourier transform one gets

A

L{r,w)og(r,w) = 65(r,w)d,(r) = S(r,w)
Solution with the Green’s function technique:

A

L(r,w)G(r,r",w) = (5(7“ -~ 7“')

op(r,w) = fG(r, r', w)S(r', w)dr’

Task: from the measured neutron noise (6¢(r,w)), knowing
the transfer function G(r,r’,w), to determine the perturbation

S(r,w).
- 43
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V6¢(z,w) + B*(w)dd(z,w) = i = S(z,w)
where
Y —B1- || p-"
X p G (w) " 2a

Solution: Green's function
V'G(z,z,w)+ B (w)G(z,z,w) =6z — =)

a

o0p(x,w) = fG(x,xO,w)S(xO,w)de

44
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1 | sin B(w)(a + z)sin Blw)(a—z,) z<z

U

B(w)sin 2B(w)a i sin B(w)(a —z)sin Blw)(a+z,) >z

0

An illustration of the dependence of the Green's
function on the frequency, system size and
perturbation point is found in the Mathematica CDF
file, downloadable from the Summer School web page.
45
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% 8@5(%? e DVi(z, 1)+ [ng(l — B) =2 _(2,8)|d(2,t) + AC(, 1)
2D | 22D _ s gz ty- a0z b
ot 0z

S (zh=2_(2)+8% (zt)

NZ1) =9¢,(2)+op(Z,1)
C(zt)=C,(2)+0C(z1)

46
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| iw ) 5123
DV*6¢(z,w) + [VE £(1- )4 —— |6d(z,w) + X * L
v U

o) j& A(w)z(5 f ol \

v bp(zw)dz+ [ e v b(z,w)dz' |

e O e (2, w)dz 0 e d(z' w)dz |

— 6%, (2,w)6,(2) = S(50)
where

Mw) = A+ iw

47
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9 9 —Mz 6V2f
V°G(2,2,,w)+ B (w)G(z,2,,w) + e D—ux
e—A(w)T ],
X*l_e_A(W)Tfe“ G(z, 2, wdz—l—fe“ G(z', 2, w)dz"|
=6(2—2,)
with
WA
Bw)=B|l———|; Mw)=A+iw
o =

48
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sl 15103
V6d(z,w) + B (w)b(z,w) + de ©

B - o),
X 1 6A<W>Tfe“5gbzwdz—|— (2! w)dz

k]_—@ 0

= 0% (2,w)p (2) = S(z, w)

f

X
Du

—(Aiw)T

~ (Miw) I/Z
0C(z,w)=¢e€¢ at

()\—l—iw)z,

H
f e v O, w)d7
0

€
1 i 6—(>\+iw)7

u

(A—I—zw)z,

—I-fze v (2, w)dz
0

= 6C (2,w) + 6C (z,w)

49
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00, (2,w) =

After inverse Fourier transform:

0C,(2,t) = e v 6p(2,t— )dz'

ﬁVZ fz (27 z—2
U YO U
Similarly, for the first integral one obtains

5C (21 6VZ

H ——zz —NAT / Z—Z/ /
fo o0p(2',t — —nT7)dz

u

50
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VQG(x z,w)+ B*(w)G(z,z,,w)

707

f G(z,z,,w)ds’ = 6(x — )

51
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(W), (@, W), (7, W)

ST, 1) = — .
ATK(w)B(w)” cos B(w)a
" 1 ; sin B(w)(a — z,)sin B(w)(a+2) =<,
B(w)sin 2B(w)a | sin B(w)(a + 7,)sin B(w)(a —z) z>x,
with

¢,(z,w) = Alcos B(w)x — cos B(w)a]

K(w) = B*(w)cos B(w)a + 2 cos B(w)a — ) sin B(w)a

T TB(w)
52
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The neutron noise is often split up into a
reactivity or point kinetic term, and a space-
dependent term:

56(z,0) = SP(w)g, (2) + 8(z,w)

01(z,w) is orthogonal to the static flux.

If the first term dominates, -> point kinetic
behaviour

If the second component dominates, i.e. the space
dependence of the noise deviates from the static
flux -> space dependent behaviour.

53
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The point kinetic behaviour is retained up to higher
frequencies (or system sizes) than in an equivalent traditional
system.

1200 ‘ ‘ ‘ 140 ‘ ‘ ‘
— Traditional reactor — Traditional reactor
1000} —MSR | 120f —— MSR
/‘/\ 100} e AN
800 e f
80/ \
600}
60(
400t
| 401
2001 / 20¢
-150 -100 -50 0 50 100 150 50 100 50 0 50 100 150
Figure: w = 0.01 rad/s Figure: w = 1 rad/s
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The physical reason is the spatial coupling, represented by
the moving precursors and the smaller value of beta-eff.

50 ‘ ‘ ‘
—— Traditional reactor
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Figure: «w = 1000 rad/s
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With the increase of the fuel velocity, the amplitude of the
response increases, and its shape becomes more point

kinetic. ¢ = 10 rad/s.
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The frequencies of the ripples correspond to the multiples
of the inverse of the recirculation time of the fuel (and

hence that of the precursors) -
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Why is point kinetics and the calculation of the point
kinetics interesting?

Because the relative contribution of the point kinetic
component has a large influence on the possibility of
recovering the noise source from the measured
heutron noise.

For identifying the position of a localised perturbation,
a strong point kinetic component is disadvantageous.

But its total absence, or a very localised transfer
function is not optimal either.
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Traditional (solid fuel) reactors:

® The point kinetic equations can be derived by the Henry
factorisation procedure;

® Together with the equation for the shape functions, the two
coupled equations are equivalent to the starting diffusion or
transport equation;

® Decoupling of the equations is achieved by the kinetic
approximations, which make various assumptions on the shape
function;

® In neutron noise theory, which is a linearized (first order) theory,
the point kinetic approximation of calculating the amplitude
function is “exact”, i.e. it gives the correct result in first order.
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Fluid fuel reactors (MSR):

® Derivation of the point kinetic equations is more involved
(Ravetto, Dulla, Lapenta);

® The kinetic approximations do not decouple the equations for
the amplitude and the shape function the same way as in
traditional systems;

® In particular, when using linear neutron noise theory, application
of the point kinetic approximations (using the static flux instead
of the shape function), gives a result which is not correct in first
order;

® The reason for this can be traced down to the fact that the
definition of the adjoint for an MSR is different (i.e. “non-local”)
from that in a traditional reactor.

® A “local” definition of the adjoint is not possible for MSR. -
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However, the linearly correct form of the point kinetic
component can still be calculated analytically, by an

alternative way.

® This is because the full solution can be obtained analytically,
and the point kinetic component can be obtained from it by
projection.

® On the other hand, it is not possible to derive one single
equation, which is not coupled to the shape function equation,
and whose solution would yield the correct point kinetic term (=
amplitude function).
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Kinetic approximations: flux factorisation

¢(Za t) - P(t)¢(27 t)

together with the normalisation condition

2 [ Al @z hdz=0

P(t) is called the amplitude function, and (z,t)
the amplitude function.
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The normalisation condition can be written as

f—z 1 (2) (2, t)dz = f_z 0! (2)d, (2)dz

With this, one can recover the amplitude function
(hence the point kinetic component) from the full
space-time dependent solution as

| Hdztaz
|” #i(2¢,(2)0z
P(t) is usually derived from the point kinetic equations,

which are generated from the full space-time
dependent equations

H(t)
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Tools: the time-dependent diffusion equations, and
the static equations for the flux and the adjoinft.

% a¢(§? 2l DV(z, 1)+ [ng@ — =% (s t)]¢(z, t)+ AC(z,1)

oC(z 1) + uac(z, f)
ot 0Z

= Vi #(z,t)—- AC(zZ )

% (zH)=3_ +63 (z1)
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One needs to factorise both the flux and the delayed
heutron precursors

d(x,1) = Ay (x1)
C(x,t)=C(DHp(x,1)

with
O ca
— | Ay (xthdx=0
and
0 (2
— [, Cl0e(xtydx=0
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The flux and precursor factorisations are substituted
into the time dependent equations;

The time dependent flux and precursor equations are
multiplied by the static adjoints of the flux and the
precursors, respectively and integrated over the
core;

The static adjoint flux and precursor equations are
multiplied by w(X,t)and ¢@(Xx,t), respectively, and
infegrated over the core;

The latter set of equations for the amplitudes P(t) and

C(t) is subtracted from the first, arriving at the
point kinetic equations.
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P(t)+ A(H)C(t)

d_ . p)-B
dtP(t)_ A

%C(t) +uS(t) = p (t);,a D pety— 1HCH)

Differences as compared to a traditional reactor:

- different definitions (weighting) of the parameters;

-the appearance of an extra term S(t) (adjointness);
- appearance of an extra reactivity term p({f)

67



CHALMERS Chalmers University of Technology

Origin of the term S(t):
a a .
|',Clo0—Clxax=[ ClxCxh [, -

[ C(x,t)ﬁc(;r (X)dx
-a OX

[ Cl(x)C(x, t)]: - Cl(a)|[ C(a,t)- C(at-1,)|=0.

Hence

= ()

S(t) ox [Cf(x)gp(x, t)ra = Cg(a) p(a,t) —pla,t —7,) C(t)
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Neglect the term S(t) and assume the factoriations

#(x.1) = A)g,(x)
C(x,t)=C(t)C,(x).

Split up the amplitudes into expectations and
fluctuations as

A =F+6A1)
C(t)=C,+5C(t)

Then, after linearisation one obtains in the frequency
domain
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SA(w) =G (o)(p*(®)+p”(®))

with
1
G, (v)= -
lo( A+ 'B:)
o+ A
and
po(@)=pt@) ==

@+ A

However, this solution does not reconstruct the
behaviour of the exaxt solution. It behaves just as
smooth in frequency as that of a traditional reactor.
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Empirical changes were suggested in the literature for
the point kinetic equations, accounting for some delay
effects:

art) pt)+p,—0

? = A P(t)+ \C(t)
@ . ﬁp(t) ot )\O(t) s C(t) I C(t . Tz)e_hl
dt A 0 T
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NS 5P(w) = p(w)G,(w)
with a modified zero power transfer function

G,(0)= :

N AP,
1+7 (lo+A)—exp{-7,(1+iw)}

. P(1—expi-Az,})
5 Ar_+(1—exp{-Az})

However, this form does not reconstruct the exact
solution either.

oA —p. +
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Can be determined from the full solution via the
normalisation condition. Define

$9(2,) = SP()6,(2) + S0{a,)
6C(z,w) = 6C(w)C (z) + dp(z,w)

Then, due to the normalisation condition, 6v(z,w)
will be orthogonal to ¢g(ﬂ3)
Hence

[* #1005p(x.0)0x
[* 8100d,(x)0x

oP(w)=
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wl /]

Comparison between the solution of the point kinetic
equations (red) and the exact solution (blue)
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Since the space-frequency dependent neutron noise
(or its Green's function) can be calculated
analytically in the present model, the point reactor
component (the amplitude factor) of the noise can
also be determined analytically.

However, one cannot derive point kinetic equations
from the space-time dependent diffusion
equations, whose solution is equal to the exact one.
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® Assume a disturbance (temperature/density
fluctuations, inhomogeneous fuel distribution)
which enters the core and propagates
upwards unchanged in the fuel channel:

( )

0.t—2

\ u/

6%, (2,t) = 6%

a




CHALMERS Chalmers University of Technology

® In the Fourier space:

. R

02 (z,w) = 02 (O,w)e .

S(z,w) = 0% (O,w)e “ P (2) =

w
—4
u

const - ¢ (z)e



CHALMERS Chalmers University of Technology

H

1 :
p(t) = _V—Z?f‘[¢ (2)0% (2,t)dz
)=~ [ o+
V)
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Fig. 1. APSD of the reactivity fluctuations due to propagating perturbations. T=2s,
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Figure: do(x,w) at different frequencies.

At intermediate frequencies, interference occurs between
the point kinetic and space dependent components (green)
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® The significance of the character of the interplay
between point kinetic and space dependent
components, as well as the frequency/system
Size domain where it is strong, Is that it
determines the possibilities of locating and
guantifying a perturbation.

Example: the Forsmark local instability event.
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* The dynamic response of an MSR deviates in certain
aspects quite markedly from that of traditional
systems

°* Hence the possibilities for diagnostics will be also
different. In general, noise amplitudes will be higher
and a more coupled (less space-dependent) response
of the the core is envisaged

* In addition, new types of disturbances or phenomena
can be expected, such as the increased significance
of propagating perturbations. New instrumentation
may be necessary to fully exploit the possibilities
for core surveillance and diagnostics.

°* Many intriguing new problems!
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