The European Commission's science and knowledge service

Joint Research Centre

The chemistry behind the Molten Salt Reactor

Rudy Konings European Commission, Joint Research Centre, Karlsruhe

Molten Salt Reactors are nuclear fission reactors in which a liquid salt is used as coolant and as solvent for the fuel

... and they are nothing new

Aircraft Reactor Experiment

Molten Salt Reactor Experiment

Aircraft Reactor Experiment

Molten Salt Reactor Experiment

Power	2.5 MW	
Fuel Salt	53% NaF, 41% ZrF ₄ , 6% UF ₄	
	(93% enriched)	
Fuel melting temperature	532 °C	
Fuel inlet temperature	663 °C	
Fuel outlet temperature	860 °C	
Fuel flow rate	205 l/min	
Moderator	BeO hexagonal blocks	
	(9.1 cm across, 15.2 cm high)	
	3.18 cm coolant passages	
Coolant	Helium to water	
Containment	Inconel	
	(Ni-Cr-Fe alloy)	
Critical	3 November 1954	
Shut down	12 November 1954	

Power	7.4 MW	
Fuel Salt	71% ⁷ LiF, 29.1 % BeF ₂ , 5% ZrF ₄ ,	
	0.9% UF ₄ (33% enriched)	
Fuel melting temperature	434 °C	
Fuel inlet temperature	635 °C	
Fuel outlet temperature	860 °C	
Fuel flow rate	1818 l/min	
Moderator	Pyrolytic graphite	
Coolant	66% ⁷ LiF, 34% BeF ₂	
Containment	Hastaloy-N	
	(68% Ni, 17% Mo, 7% Cr, 5% Fe)	
Critical on ²³⁵ U	1 June 1965	
Critical on ²³³ U	2 October 1968	
Shut down	December 1969	

Reactor classifications

According to

- Coolant
- Spectrum
- Temperature
- •

. . .

Core configuration

• Thermal or reactor • Morenical reactor It is a chemical reactor nomogeneous Coolant and fuel are one phase

that is homogeneously

distributed in the core

Claimed advantages of molten salt fuel

- Ambient pressure
- Salt expands with temperature
- No radiation damage constraints No fuel replacement
- Can be extracted from core
- Fission gases can be removed
- Fission products are retained

- No driving force for dispersion
- Negative temperature & void coefficients
- No melt-down scenario
- Better neutron economy (135Xe extraction)
- No Cs and I release

Molten fluoride salt vs. solid oxide fuel

Claimed advantages of molten salt fuel

- Ambient pressure
- Salt expands with temperature
- No radiation damage constraints No fuel replacement
- Can be extracted from core
- Fission gases can be removed
- Fission products are retained
- Allows on-line clean up and refueling

- No driving force for dispersion
- Negative temperature & void coefficients
- No melt-down scenario
- Better neutron economy (135Xe extraction)
- No Cs and I release
- Low(er) initial fissile inventory
- Reduced fission product content
- Low(er) decay heat

Claimed advantages: Thorium-based breeding

$$\begin{array}{c} 232\text{Th} + 1\text{n} \rightarrow 233\text{Th}^{22 \text{min}} 233\text{Pa}^{27 \text{day}} 233\text{U} \\ \end{array}$$
Non-fissile Fissile

- ²³³U is an exellent fissile material
- Strongly reduced transuranium element production (Pu,Np,Am)
- The Th/U cycle needs start-up (U, Pu)

Claimed advantages: Thorium-based breeding

Claimed advantages: Thorium-based breeding

Thermal versus Fast

Thermal

- Fluoride salt needed, low atomic number metals
- Low breeding ratio (Th/U)
- High clean-up frequency
- Low fissile inventory
- Moderator (graphite) life time issues

Fast

- Chloride salt gives harder spectrum
- Actinide burning capability
- Smaller through-put
- High fissile inventory
- _

Fuel salt requirements for the MSR

- ✓ Wide range of solubility for actinides
- ✓ Thermodynamically stable up to high temperatures
- ✓ Stable to radiation (no radiolytic decomposition)
- ✓ Low vapour pressure at the operating temperature of the reactor
- ✓ Compatible with nickel-based structural materials
- ✓ Compatible with the clean-up technology

Only a limited number of metals is suitable from neutronic consideration

Fluoride versus Chloride

Fluoride

- Radiation resistance
- _
- _1
- Strong moderator
- Stable hexafluorides
- Low solubility of Pu

¹ However, tritium formation from Li and Be

Chloride

• _

- Lower melting points
- ³⁶Cl formation (3.01 10⁵ y)
- Harder spectrum

• _

 High solubility transuranium elements

X (ThF₄)

Structure of a molten fluoride salt

Picture from: M. Salanne et al., in: Molten Salts Chemistry, Chapter 1, Elsevier, 2013.

- LiF is a strongly ionic liquid: Li⁺ and F⁻ species
- BeF₂ is a polymeric liquid: Be_nF_{3n+1}-⁽ⁿ⁺¹⁾ species
- ThF₄ is a molecular liquid: ThF₅⁻ and ThF₆²⁻ species

Structure & properties of the salt

Chemical potential of fluorine

✓ is the equilibrium fluorine pressure of a reduction/oxidation reaction:

M(s) + n/2F₂(g) = MF_n(s)
$$K_p = \frac{1}{p(F_2)^{\frac{n}{2}}}$$

- $\checkmark\,$ Fission increases the fluorine potential
 - The average valence of the fission products is lower than 4+ of uranium

Fluorine potential and electropotential

 $MF_{n}(s) = M(s) + n/2F_{2}(g)$

$$\Delta G_r = \mathbf{R}T \ln(p(F_2)) = n\mathbf{F}E$$

 $UF_4(ss) = UF_3(ss) + \frac{1}{2}F_2(g)$

$$E = E^0 + \frac{\mathbf{R}T}{n\mathbf{F}} \ln \frac{a(UF_3)}{a(UF_4)}$$

Standard potential in LiF-BeF₂ (66-34) relative to the HF(g)/H₂ couple 1000 K.

Redox control of the salt

 $UF_4(ss) = UF_3(ss) + \frac{1}{2}F_2(g)$

Options tested in MSRE:

 $2UF_4(sln) + Be(s) = 2UF_3(sln) + BeF_2(sln)$ $2UF_3(sln) + NiF_2(s) = 2UF_4(sln) + Ni(s)$

Standard potential in LiF–BeF₂ (66–34) relative to the HF(g)/H₂ couple 1000 K.

Oxygen chemistry of the salt

✓ Oxygen plays an important role in the fuel chemistry

$$ThF_{4}(sln) + 2O(sln) = ThO_{2}(s) + 2F_{2}(g)$$

$$\downarrow \qquad \qquad \downarrow$$
dissolved precipitate

- Oxygen concentration in fuel salt must be low (x_o < 8 10⁻⁴)
- Requires fluorination of starting material (with HF(g))
- Control of the oxidation potential of the fuel

Corrosion

1. Reaction with the oxide film on the metal

 $Cr_2O_3(s) + 2BeF_2(sln) = 2CrF_2(sln) + 2BeO(s) + \frac{1/2O_2(g)}{1/2O_2(g)}$

2. Reaction with impurities from fabrication process

$$Cr(alloy) + \frac{2HF(sln)}{2} = CrF_2(sln) + H_2(g)$$
$$Cr(alloy) + FeF_2(sln) = CrF_2(sln) + Fe(s)$$

3. Reaction with fuel constituents

$$Cr(alloy) + 2UF_4(sln) = CrF_2(sln) + 2UF_3(sln)$$

Corrosion

Hastelloy N for 1000 h at 850°C in $KF-ZrF_4$ salt (Sabharwall, 2014)

Fission product chemistry of the salt

✓ How well are the fission products retained in the fuel?

$$M(s) + \frac{n/2F_2(g)}{P_1(sln)} = MF_n(sln)$$

Chemical state of the FPs:

- Dissolved in the liquid salt
- Metallic precipitates
- Gas

Surface water distribution of cesium-137 from Fukushima in 2012 (Department of Fisheries and Oceans, 2014)

> Cs, Ba, Sr, Zr, La, I, ... Mo, Pd, Rh, Tc, Te

Fission product chemistry of the salt

✓ How well are the fission products retained in the fuel?

$$M(s) + \frac{n/2F_2(g)}{P_1(sln)} = MF_n(sln)$$

Chemical state of the FPs:

- Dissolved in the liquid salt
- Metallic precipitates
- Gas

Fission product chemistry of the salt

- ✓ Tellurium attacks the Hastalloy
 - Selective diffusion along grain boundaries
 - Intergranular cracking in strained samples
 - Laboratory experiments show
 similar cracking as MSRE

Minimised in reducing environment

Fuel salt clean-up

Fuel salt clean-up: Protactinium

 232 Th + n \rightarrow 233 Th \rightarrow 233 Pa \rightarrow 233 U

27 days

- Pa is co-extracted with the lanthanides
- Must be separated by extraction or electrochemically
- Must be stored to fully decay to ²³³U
- The ²³³U will be fed back into the cycle

Conclusion from MSRE: still relevant

- ✓ The management of the tritium production in 7LiF-BeF2 to avoid release to secondary system and environment.
- ✓ Corrosion of Hastelloy-N by tellurium.
- ✓ Fuel chemistry surveillance and control.
- ✓ Control of gas entrainment in the circulating fuel to levels < 0.1 vol% to avoid reactor instabilities.
- ✓ Continuous removal of 233Pa from the fuel to achieve high conversion/breeding ratios.
- ✓ Thermal heat transfer performance of salt/salt and salt/air heat exchangers.

Challenges for the fuel chemistry

- ✓ Optimise composition with respect to safety margins and properties
 - $\circ~$ Oxygen measurement and control
 - Redox measurement and control (corrosion)
- ✓ Demonstration of fuel fabrication & purification techniques
- ✓ Understanding of the fission product chemistry and in particular demonstrate the behaviour of Cs, I and Te
- ✓ Optimise and demonstate the clean-up technology
 - Helium bubbling for metallic particles
 - Fission product removal using extraction techniques

Research in the European Union

- MOST (FP5 2001-2004) <u>Review of molten salt reactor technology</u>
- ALISIA (FP6) <u>Assessment of LIquid Salts for Innovative Applications</u>
- EVOL (FP7 2011-2013) <u>Evaluation and Viability Of Liquid fuel fast</u> reactor
- SAMOFAR (H2020 2015-2019) <u>Safety Assessment of the Molten Salt</u>
 <u>Fast Reactor</u>

Grand Challenge SAMOFAR

The grand objective of this proposal is to prove the innovative safety concepts of the MSFR by advanced experimental and numerical techniques, to deliver a breakthrough in nuclear safety and optimal waste management, and to create a consortium of stakeholders to demonstrate the MSFR beyond SAMOFAR.

List of Participants

Number	Organisation	Country
1 (Coordinator)	Technische Universiteit Delft (TU Delft)	The Netherlands
2	Centre National de la Recherche Scientifique (CNRS)	France
3	JRC - Joint Research Centre- European Commission (JRC)	Germany
4	Consorzio Interuniversitario Nazionale per la Ricerca Tecnologica Nucleare (CIRTEN)	Italy
5	Institut de Radioprotection et de Sûreté Nucléaire (IRSN)	France
6	Centro de Investigaciony de Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV)	Mexico
7	AREVA NP SAS (AREVA)	France
8	Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA)	France
9	Electricité de France S.A. (EDF)	France
10	Paul Scherrer Institute (PSI)	Switzerland
11	Karlsruher Institut für Technologie (KIT)	Germany

The Molten Salt Fast Reactor

Working parameters

- High temperature (750 °C)
- Low pressure (1 bar)
- Circulation time (4 sec)
- LiF-ThF₄-UF₄-(TRU)F₃ (77.5-6.6-12.3-3.6 mol%).
- Online processing / fueling
- Fuel & blanket salt

Fluorination line for synthesis & purification

- HF gas line + Inconel fluorination reactor (up to 1200° C)
- ThF₄, UF₄ and PuF₃ synthesised from nano-sized ThO₂, UO₂ and PuO₂ with very high purity

 $UO_2 + 4HF(g) \rightarrow UF_4 + 2H_2O(g)$

Fluorination line for synthesis & purification

- HF gas line + Inconel fluorination reactor (up to 1200° C)
- ThF₄, UF₄ and PuF₃ synthesised from nano-sized ThO₂, UO₂ and PuO₂ with very high purity

 $PuO_2 + 3HF(g) + 1/2H_2(g) \rightarrow PuF_3 + 2H_2O(g)$

Experimental approach for phase diagram studies

Phase diagram determination: fuel optimisation

Phase diagram determination: fuel optimisation

Pseudobinary LiF-ThF₄ for 5 mol% PuF₃

Point A: <u>LiF-ThF₄-PuF₃</u> (74-21-5 mol%)

- liquidus point 935 K (662° C)
- inlet temperature 985 K (712°C) when 50 K margin

Point B: <u>LiF-ThF₄-PuF₃</u> (78.6-16.4-5 mol%)

- liquidus point is 873 K (600° C)
- inlet temperature is 923 K (650° C) when 50 K margin

Salient irradiation experiment in HFR-Petten

European

Ultimate challenge

An reactor loop to test

- Materials in dynamic conditions and under irradiation
- Test the helium bubbling on real fuels
- Test the fuel chemistry & redox control in real conditions
- Validate thermohydraulic and heat transfer models

• ...

Thank you for listening !

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: **EU Science Hub**

