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The Molten Salt (Fast) Reactor is a huge step 
forwards in the field of 
 Safety of nuclear energy 
 Sustainability of nuclear energy 
 Societal acceptance of nuclear energy 

 
SAMOFAR is the EC funded project focussing on the 
Safety Assessment of the Molten Salt Fast Reactor 

(11 partners and 6 observers) 
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TVO, Olkiluoto, Finland 
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Nuclear fission in 
liquid fuel salt 
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 Fuel flow and heat 
production in the  
◦ Reactor core  
◦ Fuel pumps 
◦ Heat exchangers 

 Melting freeze plug 
and draining of salt 

 Decay heat removal 
from drain tanks 
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 Capabilities needed 
◦ Moving fuel -> moving 

precursors 

◦ Complex geometry 

◦ Three-dimensionality 

◦ Heat transfer, (two-phase) fluid 
flow, stress analysis, neutronics 

◦ Temperature feedback effects 
on cross sections 

◦ Voidage feedback from 
bubbling and on effect flow 
structure 
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• CFD and neutronics solvers DG-FEM 
• RANS turbulence models (k-ω, k-ε) 
• Energy state and equations of state 
• Energy equation on solid domains (CHT) 
• Generalized perturbation analysis neutronics 
• Loose couplingJFNK coupling  
• Uncertainty propagation coupled codes (PCE) 
• Include other multiphysics phenomena 

 

 
 
 

2D Taylor vortex benchmarking 

Buoyancy-driven cavity benchmark 
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 Easy to implement using existing (black-box) codes 
 Cheap on a time step basis 
 At most first-order time accuracy 
 Stability may be issue; though difficult to analyse 
 Data exchange depends on physics and time scales 
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 Still easy to implement using existing codes 
 Iteration may be expensive 
 Time accuracy dictated by that of the individual codes 

(full potential can be achieved) 
 Coupling no longer dominates stability 
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 Quadratic convergence close to solution 
 Requires Jacobian (intrusive!, mostly unavailable) 
 Large linear system in each Newton iteration  
 Combine with Krylov methods (Knoll&Keyes, Journal of 

computational physics 193 (2004):357-397). 
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Several advantages: 

• Arbitrary order of accuracy on each element 

• High flexibility regarding meshes 
(structured/unstructured) 

• Local 𝒉𝒉𝒉𝒉-refinement possible 

• Compatibility between CFD and radiation code 
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Surface: Nusselt 
correlations yield heat 
transfer coefficients 
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 Fuel: Heat convection (vertical) 
 Moderator: Heat conduction (3D) 
 Individually calculating each fuel channel (1150 channels) 
 Bulk temperatures for fuel channels 
 ~1.5 million control volumes 

 



 Graphite blocks 

Fuel channels 

High resolution calculation to determine the surface 
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 Main recirculation loop: 

disadvantage for 
temperature field 

 Small secondary flow in 
corner regions 



 Rapid initial decay of flow rate within first 5 seconds 



 Flow almost steady state after 130 seconds 
 Flow rate decreased by factor 6 compared to steady-state 
 Natural convection with different structure of recirculation zone 
 Complex interplay between flow and buoyancy 



Freeze plug melting 

Challenges 
- Vertical plug walls: unknown friction 
- Uniform draining pipe width: Potential jamming 

Cylindrical Plug 

Storage tank 

Reactor core 

Draining  
pipe 

Wedge Plug 

Advantages 
- Wedge shape: Stability during transient 

operation & accelerated contact melting 
- Expanding draining pipe: No jamming 
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 Assumptions:  
◦ No subcooling 
◦ No cavity flow 
◦ Decay heat source of 100MW in core 
◦ Drainage pipe thickness of 0.02m 
◦ FliNaK  

 Approx. 6cm of melting observed after 300  
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 Homogeneous power production in fuel salt 
 Solidification phenomena 
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 Simulation of the Molten Salt Reactors is 
challenging and requires rigourous 
multiphysics codes and methods 

 Challenges especially in  
◦ Primary fuel circuit (core, pumps, heat exchanger, …) 
◦ Freeze plug design and  
◦ Decay heat removal (passive cooling, solidification, …) 

 Participation of industry very much appreciated 
 

 Website: www.SAMOFAR.eu 
 Contact: J.L.Kloosterman@tudelft.nl 

http://www.samofar.eu/
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