

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 661891

Simulation challenges of the Molten Salt Fast Reactor

Jan Leen Kloosterman TU Delft, Netherlands

On behalf of the SAMOFAR consortium

It's nuclear

But it's nuclear 2.0

The Molten Salt (Fast) Reactor is a huge step forwards in the field of

- Safety of nuclear energy
- Sustainability of nuclear energy
- Societal acceptance of nuclear energy

SAMOFAR is the EC funded project focussing on the Safety Assessment of the Molten Salt Fast Reactor (11 partners and 6 observers)

Nuclear fission process

Chemwiki, CCPL

Nuclear chain reaction

SAMOFAR

Chemwiki, CCPL

Traditional nuclear energy

TVO, Olkiluoto, Finland

TO TO HOMAN ROTO PO PATA

Loop-type Molten Salt Reactor

SAMOFAR

02-GA50807-02

Pool-type Molten Salt Fast Reactor

MSFR primary circuit

MSFR characteristics

Parameter	Value
Thermal/electric power	3000 MWth / 1300 MWe
Fuel salt temperature rise in the core (°C)	100
Fuel molten salt - Initial composition	LiF-ThF ₄ - ²³³ UF ₄ or LiF-ThF ₄ - ^{enr} UF ₄ -(Pu-MA)F ₃ with
	77.5 mol% LiF
Fuel salt melting point (°C)	585
Mean fuel salt temperature (°C)	725
Fuel salt density (g/cm ³)	4.1
Fuel salt dilation coefficient (g.cm ⁻³ /°C)	8.82 10 ⁻⁴
Fertile blanket salt - Initial composition (mol%)	LiF-ThF ₄ (77.5%-22.5%)
Breeding ratio (steady-state)	1.1
Total feedback coefficient (pcm/°C)	-8
Core dimensions (m)	Radius: 1.06 to 1.41
	Height: 1.6 to 2.26
Fuel salt volume (m ³)	18 (1/2 in the core)
Total fuel salt cycle in the fuel circuit	3.9 s

Simulation challenges

- Fuel flow and heat production in the
 - Reactor core
 - Fuel pumps
 - Heat exchangers
- Melting freeze plug and draining of salt
- Decay heat removal from drain tanks

Multiphysics in the MS(F)R

- Capabilities needed
 - Moving fuel -> moving precursors
 - Complex geometry
 - Three-dimensionality
 - Heat transfer, (two-phase) fluid flow, stress analysis, neutronics
 - Temperature feedback effects on cross sections
 - Voidage feedback from bubbling and on effect flow structure

Multiphysics simulation codes

Multiphysics simulation codes

DG-flow

 τ_{n+1}

- CFD and neutronics solvers DG-FEM
- RANS turbulence models (k-ω, k-ε)
- Energy state and equations of state
- Energy equation on solid domains (CHT)
- Generalized perturbation analysis neutronics
- Loose coupling → JFNK coupling

PHANTOM $-S_N$

 t_n

- Uncertainty propagation coupled codes (PCE)
- Include other multiphysics phenomena

Buoyancy-driven cavity benchmark

2D Taylor vortex benchmarking

Adaptive refinement

Uncertainty analysis

Uncertainty analysis

Polynomial chaos expansion: FANISP

Department of Nuclear Energy and Radiation Applications

Conventional (loose) coupling Splitting schemes

- Easy to implement using existing (black-box) codes
- Cheap on a time step basis
- At most first-order time accuracy
- Stability may be issue; though difficult to analyse
- Data exchange depends on physics and time scales

Tight coupling scheme Iteration per time step

- Still easy to implement using existing codes
- Iteration may be expensive
- Time accuracy dictated by that of the individual codes (full potential can be achieved)
 - Coupling no longer dominates stability

Newton's method

- Quadratic convergence close to solution
- Requires *Jacobian* (intrusive!, mostly unavailable)
- Large linear system in each Newton iteration
- Combine with Krylov methods (Knoll&Keyes, Journal of computational physics 193 (2004):357-397).

Why Discontinuous Galerkin?

Several advantages:

- Arbitrary order of accuracy on each element
- High flexibility regarding meshes
 (structured/unstructured)
- Local *hp*-refinement possible
- **Compatibility** between CFD and radiation code

Molten Salt Reactor Experiment (MSRE 1965-1969)

MSRE: 3D model

- Fuel: Heat convection (vertical)
- Moderator: Heat conduction (3D)
- Individually calculating each fuel channel (1150 channels)
- Bulk temperatures for fuel channels
- ~1.5 million control volumes

MSRE: Temperature field close-up

High resolution calculation to determine the surface temperature of the graphite and the heat transfer

MSRE: Pump failure

Pump coast-down to 20%

MSRE: Pump start-up

MSRE: Pump start-up

MSFR: Steady state power-temp

MSFR: Steady state flow

- 4.5
 - Main recirculation loop: disadvantage for
 - temperature field
 - Small secondary flow in corner regions

MSFR: Pump failure

SAMOFAR

Rapid initial decay of flow rate within first 5 seconds

MSFR: Pump failure

- Flow almost steady state after 130 seconds
- Flow rate decreased by factor 6 compared to steady-state
- Natural convection with different structure of recirculation zone
- Complex interplay between flow and buoyancy

Freeze plug melting

Cylindrical Plug Reactor core

Challenges

- Vertical plug walls: unknown friction

SAMOFAR

- Uniform draining pipe width: Potential jamming

Advantages

- Wedge shape: Stability during transient operation & accelerated contact melting
- Expanding draining pipe: No jamming

Freeze plug melting

- Assumptions:
 - No subcooling
 - No cavity flow
 - Decay heat source of 100MW in core
 - Drainage pipe thickness of 0.02m
 - FliNaK
- Approx. 6cm of melting observed after 300

Draining of the fuel circuit

Draining tanks heat removal

Homogeneous power production in fuel salt

Solidification phenomena

Draining tanks heat removal

Experimental validation: DYNASTY

Experimental validation: SWATH

Conclusions

- Simulation of the Molten Salt Reactors is challenging and requires rigourous multiphysics codes and methods
- Challenges especially in
 - Primary fuel circuit (core, pumps, heat exchanger, ...)
 - Freeze plug design and
 - Decay heat removal (passive cooling, solidification, ...)
- Participation of industry very much appreciated
- Website: <u>www.SAMOFAR.eu</u>
- Contact: J.L.Kloosterman@tudelft.nl

