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Abstract
Molten salts have been proposed as heat carrier media in the nuclear and
concentrating solar power plants. Due to their high melting temperature,
solidification of the salts is expected to occur during routine and accidental
scenarios. Furthermore, passive safety systems based on the solidification of
these salts are being studied. The following article presents new developments
in the modeling of eutectic molten salts by means of a multiphase, multi-
component, phase-field model. Besides, an application of this methodology for
the eutectic solidification process of the ternary system LiF–KF–NaF is pre-
sented. The model predictions are compared with a newly developed semi-
analytical solution for directional eutectic solidification at stable growth rate.
A good qualitative agreement is obtained between the two approaches. The
results obtained with the phase-field model are then used for calculating the
homogenized properties of the solid phase distribution. These properties can
then be included in a mixture macroscale model, more suitable for industrial
applications.

Keywords: eutectic solidification, molten salts, FLiNaK, phase-field model,
condensed parameters, semi-analytical model

(Some figures may appear in colour only in the online journal)

1. Introduction

Molten salts coolants have been recently proposed as heat carrying media in nuclear [1] and
solar concentration [2] energy applications. This is mainly because of their high heat capacity,
low vapor pressure and chemical stability in high temperature and radiation environments [3].
In particular, molten salt reactors (MSR) [4] are a central subject of research in the nuclear
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industry due to the novel design and safety possibilities offered by a liquid nuclear fuel.
Among different MSR designs, the molten salt fast reactor (MSFR) [5] is a concept currently
being developed in the framework of the European project SAMOFAR (2015–2019). A
schematic representation of the current design of this reactor is shown in figure 1.

The initial (non-irradiated) composition of the fuel salt in the reactor is a mixture of
lithium fluoride (LiF), thorium tetra-fluoride (ThF4) and other actinides fluorides with reduced
concentration. The current candidates for the fissile molten salts in the MSFR are
LiF ThF UF4

233
4– – and LiF ThF UF PuF4

enr
4 3– –( – ). The molten salt flows into the reactor cavity

from the bottom at about 700 °C after passing through the heat exchangers (see figure 1). In
the core cavity of the reactor, 3 GW of thermal power are produced due to nuclear reactions.
Consequently, the temperature of the molten salt rises approximately by 100 °C. The molten
salt exits the reactor cavity from the top and is then propelled by the pumps back into the heat
exchangers. In case of a loss of cooling accident, the fuel salt temperature may increase
beyond the acceptable limits due to the nuclear decay heat. In order to avoid causing damage
to the reactor structures, a passive safety system has been designed. This passive system
consists in a set of cold plugs located in the lower part of the reactor, between the heat
exchangers and the core cavity. The cold plugs are made of solidified salt. The working
principle is based on the melting of the cold plugs as the reactor temperature rises, which
allows the fuel salt to drain into dedicated storage tanks. Since this is the main safety system
of the reactor, the cold plugs have to be carefully designed, to substantially reduce uncer-
tainties. For example, a typical design requirement is that the cold plugs should not melt
during routine operation. On the contrary, they should quickly melt in case of a large
temperature rise in the reactor.

The SWATH experiment is currently being developed at the LPSC laboratory (Grenoble
—France) as part of the SAMOFAR project [6]. One of the objectives of this project is to
theoretically and experimentally study the solidification phenomena of a molten salt in order

Figure 1. Schematic representation of the current design of the MSFR primary fuel
circuit. The cold plugs are located at the lower entrance of the reactor cavity and their
objective is to drain the liquid nuclear fuel to dedicated storage tanks.
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to improve the design of the safety systems [7]. The molten salt selected for the SWATH
experiment is a eutectic FLiNaK (LiF–KF–NaF, 46.5% 42.0% 11.5%– – mol) salt. This salt
does not contain nuclear fissile material. However, at the operation temperatures in the
SWATH experiment, the salt has similar dimensionless numbers (Prandtl (Pr), Weber (We)
and Lewis (Le)) than the fuel salt of the MSFR. This allows verifying the performance of the
fuel salt solidification models with a ternary FLiNaK system in the SWATH experiments.

Due to the importance in industrial applications of eutectic alloys, various analytical and
computational models have been developed for studying eutectic solidification [8, 9]. As base
theory, the well-known formulation of Jackson and Hunt [10] describes steady-state eutectic
growth and relates the lamellar spacing of phases to the undercooling of the solid–liquid
interface, for a known velocity of this interface. According to this theory, a simultaneous
growth of the lamellae in binary alloys occurs at an optimum lamellar spacing. This optimum
spacing corresponds to the minimum undercooling of the solid–liquid interface [11]. How-
ever, recent numerical studies for binary eutectic systems [12] and for ternary eutectic systems
[13] have shown that the patterns formed in this lamellae may depend also on the solidifi-
cation path. In particular, it was demonstrated that there might be several solidification
structures that exhibit a stable growth with similar undercooling.

The computational modeling of eutectic solidification is challenging due to the presence
of a liquid phase and two or more solid phases (depending on the thermodynamic phase
equilibria of the system). Furthermore, the challenge of the numerical simulation of eutectic
solidification is to obtain an accurate resolution of the dynamics of the interfaces formed by
the junctions between the different phases. Table 1 presents a brief summary of some of the
different methods used in the modeling of eutectic solidification.

The enthalpy method is one of the most popular approaches for numerical simulation of
solidification [21]. This method consists in solving the energy conservation via the accu-
mulated enthalpy. Then, the value of this accumulated enthalpy for each computational cell in
the mesh can be used to track the interfaces. This method is interesting since it can be easily
coupled—by operation splitting techniques—to the equations of conservation of species and
momentum in the system [7]. Furthermore, it can be applied to large scales [22], like the one
of the cold plugs. However, the solidification process resolved by this model is strongly
dependent on the thermo-physical properties of the solidifying media, namely the thermal
conductivity (which may be highly anisotropic in the solid phase), the solute diffusion
coefficients and the spacing between the solid corps of the system in the mushy-zone.

Table 1. Review of computational models applied to eutectic solidification.

Reference Computational model

[14] Macroscopic enthalpy method for eutectic solidification of binary
systems.

[15] Quantitative multiphase multicomponent phase field model for ternary
alloy solidification.

[16] Quantitative multiscale phase field model for large-scale ternary eutectic
solidification.

[17] Multiscale diffuse interface model solving the large scale by an averaged
macroscopic system and the small scale by a phase field method.

[18] Phase field method coupled with atomistic simulation models such as
molecular and Monte Carlo methods.

[19] Level set method for eutectic solidification of multicomponent systems.
[20] Phase enthalpy method for the solidification of a binary alloy.
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Furthermore, enthalpy models do not contain information about the distribution of the solid
phases during the solidification process. These limitations will restrict the usage of this kind
of models for the reliable design of the cold plug. In order to overcome these limitations, the
solidification process needs to be studied with a mesoscale solidification model. This type of
model allows calculating the thermal conductivity, solute diffusivity and corp-spacing values
needed by the macroscale enthalpy model. This is the objective of the present work.

The phase field method has been largely used for the study of the microstructure for-
mation during solidification processes [23]. This method introduces a phase-field variable,
e.g. f, function of position and time, to describe whether a computational cell is solid or
liquid. In the case of a multiphase system, the phase variable can be also used to track the
phases distribution in the solid (e.g. α solid, β solid, etc) [15]. The particularity of this method
is that the phase variable allows to represent the various interfaces (e.g. solid–liquid interfaces
and α solid–β solid interfaces) in a diffuse manner, so that no interface tracking is needed. For
these reasons, the technique of phase field modeling will be adopted in this work for the study
of the solidification process of the ternary eutectic system FLiNaK.

Recently, the solidification of the ternary metallic Ag–Al–Cu system has been studied by
means of large scale phase-field simulations [24, 25]. In these works, different brick-like
patterns have been observed during the solidification process, giving rise to a spiral-growth in
three dimensions. The obtained microstructure was analyzed and compared to experimental
microphotographies with a good agreement. As noted by [26], the morphology of this
microstructure is highly sensible to surface tension values. The surfaces tensions between
phases in the FLiNaK system do not exhibit large differences (see 3). Therefore, the brick-like
structure and the spiral-growth are not expected in this system. Furthermore, the solid phases
are expected to grow parallel to the temperature gradient (i.e. without a tilt angle) as observed
in an illustrative case for the similar LiF–NaF system in figure 2. Furthermore, the influence
of the solidification path in the solid structures formed has been studied in [13, 27]. It has
been observed that the morphology of the solid structure will be sensible to changes in the
volume fraction of the solid phases. For the solidification conditions of the MSFR, there are
no apparent reasons to expect changes in the volume fractions of the phases and, hence, this
phenomenon is gloss over in the present work.

Other ternary systems have also been experimentally studied, such as the metallic-alkali
ternary system Mg–Al–Cu, which presents an intermetallic compound formed during

Figure 2. Solid obtained after the solidification process of a eutectic mixture of LiF–
NaF under controlled temperature conditions. The dark phase corresponds to NaF and
the clear one to LiF.
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solidification, determining the development of a regular/irregular eutectic structure. In
particular, it has been observed in experiments [28] that the changes in the solidification path
affect the regularity and twinning of the phases formed, rather than the distribution of the
phases themselves. For the FLiNaK case, this effect is negligible, since there is a perfect
partition of the phases during solidification.

Very few works are available in the open literature on the development of numerical
models for the solidification of molten salts. For example, the solidification of a molten salt in
a pipe has been studied by means of numerical simulation using a macroscale enthalpy
formulation in the work done by [29]. However, this macroscale model makes some
important approximations. In the first instance, it considers the thermal conductivity in the
formed solid as being isotropic and uniform, which may lead to an inaccurate temperature
field in the system during the solidification process. In addition, the arm spacing of the solid
corps in the mushy-zone is not considered, which make it difficult to estimate the momentum
sink terms These two approximations can have a substantial impact on the model results and,
therefore, ought to be improved. The aim of the present work is to address this research gap.
In fact, this article aims at improving the understanding on the development of the micro-
structure during the solidification of a molten salt, using afterwards this information to
increase the reliability of macroscale models.

This article is divided into two parts. In the first part, a semi-analytical model is
developed for calculating the microstructure for the eutectic FLiNaK system at a steady
solidification rate. The structure is computed by minimizing the undercooling of the solidi-
fication interface. The model equations are solved with a semi-analytical method, for guar-
anteeing that the predicted solid microstructure results from the model assumptions and not
from the implemented numerical method. The implications on the solidification dynamics of
the calculated solidified structure are then discussed. In the second part of this work, the
solidification of eutectic FLiNaK is analyzed by means of a phase field model. Further
insights in the solidification dynamics are identified and analyzed. Finally, some of the solid
macroscopic properties such as thermal conductivity, solute diffusivity and corp-spacing
parameters are calculated. These properties could then be used as inputs in a macroscale
enthalpy model.

2. Theoretical study

2.1. Description of the system

Molten salts used for industrial purposes are usually eutectic systems. These systems allow
lowering the melting point, reducing the risks of unexpected solidification and improving the
operating margins [30]. Little experimental data exists on the study of solidification of molten
salts. However, the eutectic solidification process has been studied in other systems such as
metallic [31], organic [32], ceramic [33] and glass [9] systems, amongst others. Therefore,
part of the eutectic solidification-modeling techniques developed for these mixtures can be
used for molten salts. Nevertheless, the particularities of the solidification of molten salts have
to be taken into account when adapting the models developed for the aforementioned systems.

In order to decrease the vapor pressure in the systems operating with a molten salt at high
temperature, salts composed by ionic bonds between halogens and alkali metals (e.g. LiF, KF,
NaCl, etc) are chosen [34]. Consequently, the solid–solid and solid–liquid interface tensions
in these systems are high ( 250 dyn cm 1) [35] and the thermal conductivity of the liquid
and the solid are small (k 1 W mK 1) [36]. In addition, as a pragmatic criterion, the relation
between the entropy of melting ( Sf

m) [37] and the universal constant of gases (R) is
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approximately S R 1f
m [38], which explains the non-faceted and regular structures nor-

mally observed during the solidification process of molten salts. For illustration purposes,
figure 2 shows the solid structure obtained for an eutectic mixture of LiF–NaF (61% 39%–
mol) in an experiment performed at LPSC-Grenoble.

In the present section a theoretical study for the solidification phenomena of the ternary
eutectic FLiNaK (LiF–KF–NaF, 46.5% 42.0% 11.5%– – mol) system is presented. The ternary
phase diagram for this system is shown on the Gibbs simplex presented in figure 3 [39]. The
solidification temperature for the eutectic composition, known as the eutectic temperature, is
727 K. During the eutectic solidification process, three phases are produced LiF, KF and NaF,
referred from now on as α, β and γ respectively. As observed in the phase diagram, no
solubility is expected between phases. Therefore, during the solidification process, a perfect
partition of the molten salt in the three solid phases is obtained. While the solidification
process will more often occur under external convection conditions (for example on the
surface of the plates of the heat exchangers of the MSFR), for simplicity, only heat exchanges
due to thermal conduction are considered near the solid–liquid interface. The modeling efforts
in the present work are focused on the microscopic structure modeling and not on the
influence of the external convection rate on the solidification process, which will be the
subject of future developments. Finally, in our applications the volume of the hypothetical
solidified fuel salt will be almost negligible in comparison with the total volume of the molten
fuel existing in the MSFR. Hence, a permanent renewal of the liquid in front of the interface
by the external free stream convection can be assumed. Therefore, the morphological changes
in the solid phase microstructure due to modifications of the volume fractions of the phases
caused by a non-constant composition of the liquid in the solidification front (solidification
path effects [13, 27]) are neglected.

Starting by the ground theory of Jackson and Hunt, the solidification of binary alloys
have been widely studied in the literature [10]. However, the dynamics of the solidification
process for a binary alloys are different to that of a ternary alloys [40]. Therefore, a different
theoretical treatment is needed. Consequently, in the following section, a theoretical frame-
work is proposed for the study of the solidification process of eutectic FLiNaK. Furthermore,
this model is then used for predicting the shape of the solid structures formed during the
solidification process by minimizing the undercooling in the solid–liquid interface.

Figure 3. Ternary phase diagram for the KF–LiF-–NaF system [39]. The eutectic point
is at a composition of (46.5%–42.0%–11.5%)mol and the eutectic temperature is at
454 °C (727 K).
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2.2. Methodology

The initial system is assumed to be molten FLiNaK, in a 3D domain (V R3) that is assumed
to be infinite in the x y, directions and semi-infinite in the z direction, which is the growth
direction for the solid (see figure 4). Initially, the system is in liquid state, at a uniform
eutectic composition over the whole domain and at the eutectic temperature. At the initial
time, heat is extracted at a constant rate from the inferior part of the domain (z= 0) and the
solid starts to grow in the z direction.

Initially, the solid will grow erratically in the z-direction, due to the non-uniformity
caused by the nucleating and coarsening of the initial solid nuclei formed and the initial solid
structure rearrangements [41]. As the solid grows, the heat extraction process becomes less
efficient because the solid imposes an additional thermal resistance between the heat sink
(located at z= 0) and the solid–liquid interface, from where heat is being extracted. More-
over, the solid phase thermal resistance is larger for the (x, y) positions in which the solid have
grown further along the z direction due to the initial perturbations. Consequently, after the
solidification front has grown a certain distance from the initial plane, the initial perturbations
are dumped and the solid–liquid interface continues to grow in the z-direction as a planar front
[42]. This is the initial condition from which the model is built.

As the solidification process is taking place, a redistribution of solute occurs in the liquid
due to the difference in the composition between the liquid and the solid phases [43]. For
example, as the α-phase is solidifying, NaF and KF are rejected by the solid phase, while LiF
is absorbed by it. Therefore, for the energetic cost of solute migration, the configuration of
less energy in the solid phase is the one in which the three phases of the system shown in
figure 4 are infinitely close to each other, i.e. having a negligible thickness. However, due to
crystallographic differences of the three solid phases, there is an energetic cost induced in

Figure 4. Example of a unit cell extracted from the solidification pattern of the system.
The black areas corresponds to the LiF phase (α), the dark gray areas to the KF phase
(β) and the light gray areas to the NaF phase (γ).
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solidifying the three phases next to each other. The energy for the formation of interfaces
between two phases – in the system can be computed as the specific energy cost of
forming an interface between two phases – ( J m 2[ ]), multiplied by the total area of the
interface (A m2[ ]). Summing over all types of interfaces in the system, the total energy cost
associated to the interfaces in the system is

E A .int

Therefore, for reducing the energetic cost of solidification, the system will tend to minimize
the interfacial area, thus maximizing the thickness of the formed solid phases.

The competition between these two phenomena explains the formation of regular
structures of finite length in the eutectic solidification process [44]. Therefore, in this section
we study an infinite system assuming periodicity in the structures formed during the solidi-
fication process and using a unit cell to represent the smallest repetitive pattern of this infinite
system (see figure 4).

The previously discussed energetic costs of solute migration in the development of the
interfaces, is traduced in the system as an undercooling of the solid–liquid interface below the
eutectic temperature. For a given phase ν ( , , ) the defect in the interface temperature
with respect to the eutectic temperature (TE) can be calculated by the Gibbs–Thomson relation
[45], formulated for the present system as,

T T m c c , 1E X X X
E

int ( ) ( )
where cX is the concentration in the liquid adjacent to the interface of component X (being
X LiF, KF, NaF( ) for the , ,( ) phase respectively), cX

E is the concentration of
component X in the eutectic composition and mX

T

c c
d

d 1 constant
X

X X
∣( ) is the liquidus

slope evaluated at the eutectic composition. Furthermore, T Ll E is the Gibbs–
Thompson coefficient, where l is the solid–liquid surface tension and Lν is the latent heat of
fusion per unit volume for the ν phase. The relevant parameters used for the present study are
given in table 2.

The concentration field (cX) in the liquid is described by a stationary diffusion equation
resulting from the conservation of mass of the component X in the liquid. The description of
the system is carried out on an inertial reference frame moving at the speed of the solidifi-
cation interface (v) in the z direction. Assuming for simplicity a constant diffusion coefficient
for the three phases (D), the equation can be written as follows:

v
c

z
D c 0, 2X
X X

2 ( )

where DX is the diffusion coefficient for the component X.

Table 2. Liquidus slopes, solid–liquid surface tensions and latent heats of fusion for
each of the components of the eutectic FLiNaK system.

Parameter Value References

[m m m, ,LiF KF NaF] [5.5054, 4.7143, 3.3043] K%c−1 [46, 47]
, ,l l lLiF, KF, NaF,[ ] [0.278, 0.111, 0.185] Nm−1 [48]a [49]a

L L L, ,LiF KF NaF[ ] [2.38× 107, 9.54× 106, 1.34× 107] J kg−1 [50]
D D D, ,LiF KF NaF[ ] [7.74× 10−10, 9.77× 10−10, 1.01× 10−9] m s2 1 [51]a [52]a

a
Values extrapolated following the theoretical model.
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For the studied unit cell domain, shown in figure 4, periodic boundary conditions are
assumed in the x–y directions,

c y z c L y z0, , , , , 3X X( ) ( ) ( )

c x z c x L z, 0, , , . 4X X( ) ( ) ( )
For the z direction, it is assumed that as z , the concentration goes to the original

eutectic concentration c cX X
E . For z=0, following the Jackson–Hunt theory, the solid–

liquid interface flux condition is given by the Stefan’s boundary condition [53] approximating
the composition of component X in the liquid to the eutectic composition,

D
c

z
v c c , for , , . 5X

X
E

X( ) ( ) ( )

Introducing the diffusion length parameter D vL , and defining the dimensionless
parameters x x L* , y y L* , z z L* , 2 2 2L* , c c c cX X X

E
X
E* ( ) , the

dimensionless problem for the diffusion of component X can be written as follows:

c

z
c 0,with the boundary conditions: 6X
X

2
*

*
* * ( )

c x z c x z, 0, , 1, , 7X X* * * * * *( ) ( ) ( )

c y z c y z0, , 1, , , 8X X* * * * * *( ) ( ) ( )

c x y z z, , 0 for , 9X* * * * *( ) ( )

c

z
x y

c

c
c, , 0 1 . 10X X

X
E X*

* *
*⎛

⎝⎜
⎞
⎠⎟( ) ( )

The conservation equation (6) can be solved by the method of separation variables,
resulting in an eigenvalue problem in the x–y directions and a second order ordinary diff-
erential equation (ODE) in the z direction. Using the periodic boundary conditions in the x–y
directions, the solutions to the eigenvalue problem on this plane become trigonometric
functions with half period equal to the length of the direction. Using the Euler’s identity, the
solutions can be expressed as f x y, enm

k x k yi n m( ) ( ) and the eigenvalues of the problem are
k nn and k mm . In addition, the second order ODE obtained in the z direction admits a
decay solution of the form g z enm

q znm( ) , where qnm are decay modes dependent of the
Fourier solution in the x–y plane. The general solution is therefore proposed as the Fourier
series of the product of the separated solutions in the x–y and z directions,

c x y z X, , e , 11X
m n

nm
k x k y q z

,

i n m nm* * * *( ) ( )( )

where Xnm are the coefficients of the Fourier expansion that have to be determined.
By inserting the proposed solution (11) in the general equation (6), the decay coefficients

qnm are obtained as follows:

q k k
1

2

1

2
. 12nm n m

2 2 ( )

To determine the coefficients Xnm of the Fourier series, the proposed solution (11) is
inserted in the Stefan’s boundary condition (10) yielding,
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q X ce . 13
m n

nm nm
k x k y

X
,

i n m ( )( )

Next, the dot product with norm is defined as,

R R f f x y A, : , . , e d ,
A

k x k y2
op

i

c

o p∣ ( ) ( ) ( )

where o p Z, . Taking the scalar product on both sides of equation (13) gives,

q X A c Ad e d . 14
A m n

nm nm mn c
A

X
k x k y

c
, 1

,op
i

c c

o p ( )( )

Working this expression, noting that the indexes (o, p) are dummy ones that can be
replaced by another set of dummy indexes (m, n) and that Ac = 1, the Fourier coefficients can
be determined as follows:

X
q

c A
1

e d . 15nm
nm A

X
k x k y

c
i

c

n m ( )( )

Finally, as displayed in figure 4, the unit cell area is composed independently by the three
solid phases α, β and γ. Therefore, the integral over the area in the right-hand side of
equation (15), can be split over the area of each of the phases, where each individual phase
contains a component X, resulting in,

X
q

c A
1

e d . 16nm
nm A

X
k x k y

c
1

3
i

c

n m ( )( )

Once the distribution of the phases in the unit cell is known, the Fourier coefficients are
uniquely determined. If experimental information of the distributions of phases in the soli-
dified structure is available, equation (16) can be used for determining the concentration field
in the liquid in front of the interface. However, to the authors knowledge, this experimental
information is not yet available for the FLiNaK eutectic system. Therefore, a different
approach is taken. The average undercooling of the interface is calculated for the unit cell and,
by minimizing this undercooling, the solid structure is computed.

As expressed by the Gibbs–Thompson relation (1) [45], the undercooling of the solid–
liquid interface can be expressed as the sum of the constitutional and curvature undercooling.
By introducing the dimensionless temperature T T T TE Eint int* ( ) , liquidus slope
m m T cX X E E* * and curvature L* , the Gibbs–Thompson relationship can be
expressed in dimensionless form as,

T m c , 17X Xint* * * * * ( )
where Ll L* ( ).

The average constitutional undercooling of the solid liquid interface can be obtained by
the weighted average of the constitutional undercooling over each of the phases. This can be
written as follows:

T
m c A

A
, 18

X X
int con*

* *
( ) ( )

where A is the area occupied by the ν-phase in the unit cell. In order to compute the
curvature undercooling, the curvature of the solid–liquid interfaces needs to be determined for
each of the phases in the system. The curvature for each component is defined as the
divergence of the normal unit vector to the solidification interface [54]. In the present case,
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following this definition, the curvature for a phase ν containing a component X is proposed to
be computed as c c•X X X* * * * * *( ∣ ∣). Developing this vector relation in the x–y
directions, the curvature can be computed by

2
. 19X

c

x

c

y

c

x

c

y

c

x y

c

y

c

x

c

x

c

y

2 2

2 2

X X X X X X X

X X

2

2

2 2

2

3
2

*

*

*

*

*

*

*

*

*

*

* *

*

*

*

*

*

*

*

*

⎛
⎝⎜

⎞
⎠⎟

( )( ) ( )( )( ) ( )( )
( ) ( )

( )

This curvature is numerically calculated on the x–y plane for each of the components X
and its corresponding phase ν. The mean curvature undercooling of the interface is then
determined as,

T
A

A
. 20

X
int cur*

* *
( ) ( )

Finally, the general undercooling of the interface can be computed as the sum between
the constitutional and curvature undercooling,

T T T . 21int int con int cur* * *( ) ( ) ( )
The solid structure is determined as the one minimizing the undercooling of the interface.

The processes of optimization is carried out via a feasible direction method [56], in which the
objective function to be minimized during the optimization method is the interface under-
cooling as a function of the spatial distribution of the solid phases,

T c c c, , . 22int LiF KF NaF* * *( ) ( )
The constrain of the conservation of species is imposed in the concentration field is imposed
as

c c c 0. 23LiF KF NaF* * * ( )

The overall optimization process is displayed in figure 5. Initially, a random distribution
of the solid phases, satisfying the constraint in the concentration field (23), is proposed. With
this distribution of the solid phase, the Fourier coefficients for the concentration field in the
liquid (16) are computed, thus allowing obtaining the concentration field. Then, the under-
cooling of the solid–liquid interface is computed (21). In particular, the curvature under-
cooling (19) is numerically computed using a fourth order ENO-Pade scheme [55] for
reducing potential integration errors. Afterwards, a feasible direction of optimization for each
of the phases is computed [56] and the solid phase distribution is actualized to the new
calculated value. This new solid phase distribution is used for recalculating the Fourier
coefficients (16) and the iterative process is carried on. The area weighted difference between
the iterations n 1 and n in the solid fields is defined as,

C x y C x y A

C x y A

, , 0 , , 0

, , 0
. 24X X

n
X

n
X

X X
n

X

1* * * * * *

* * *

[ ( ) ( ) ]
( )

( )
( )

The iterations are carried out until 10 5.

2.3. Results and discussion

The iterative procedure was carried out using an uniform mesh discretization of
1000, 1000, 5000( ) cells in the x y z, ,( ) directions for the unit cell. In addition, 80 Fourier
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coefficients were used for in both x and y directions, having n 40, 40[ ]
and m 40, 40[ ].

The results obtained for the solid phases distribution are shown in figure 6. Two plates of
KF and LiF are predicted in the sides of the domain, whereas the NaF phase is predicted to
grow in a column shape between the other two phases with a lens-like cross sectional area.
Considering the periodic boundary conditions imposed in the x–y directions for the unit cell,
the prediction for the formed solid field results in long plates of KF and LiF of similar
thickness, which grow in the z direction. The center of these plates are in the sides of the unit
cell. For the NaF phase, the growth is predicted along the z direction and between the plates of
the LiF and LiF phases. The lens shape cross section x–y plane corresponds to the structure
that minimizes the surface energy of the phase respecting the Young–Dupre equilibrium at its
boundary.

From the solute migration point of view, one would expected that the phase with less
concentration would be located between the other two phases. This is because the migration
process KF and LiF from the γ solid phase will consume less energy if the migration distance
is as short as possible for both solutes. The reason why the LiF and KF phases solidify as long
plates is a results of the large surface energy involved in the formation of the interfaces
between these two phases. Therefore, the solidification process tends to minimize the surface
between the LiF and KF phases, arriving to a unique straight plane perpendicular to the x–y
plane.

The concentration field for each component in the liquid adjacent to the solid–liquid
interface c x y, , 0X * *( ) in shown in figure 7. When a phase ν is solidifying, the component X,

Figure 5. Optimization process for the determination of solid phases distribution on the
unit cell.
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associated to that phase ν, decreases its concentration next to the solid phase and increases it
next to the other two phases. This is because the component is absorbed by the phase ν and
rejected by the other two. For example, we observe for the KF concentration in the liquid that
the concentration of the component decreases close to the β solid phase and increases close to
the other two. In addition, the minimum concentration of the KF component is found at the
left boundary of the unit cell, corresponding to the center of the KF plate. A similar behavior
is observed for the other two components.

There are two important facts resulting from the analysis of the concentration fields. First,
it is observed that concentration in the liquid next to the interface is smeared out by the
diffusion process in the liquid, resulting in a maximum variation of the concentration of the
components next to the solid–liquid interface to be of about 5%. This fact is important,
since it will limit the ulterior design of safety devices based in the rapid solidification of the
molten salt. Secondly, it is observed that the variations in the concentrations of the KF and

Figure 6. Solid phases’ distribution minimizing the undercooling of the solid–liquid
interface in the unit cell. The KF phase is located in the left, the NaF phase is the lens
shape structure in the center and the LiF phase is located in the right. Considering the
periodic boundary conditions for the unit cell, the right border of the unit cell
corresponds to the center of the LiF phase and the left border corresponds to the center
of the KF phase.

Figure 7. Concentration field in the liquid adjacent to the interface for the components
KF (left), NaF (center) and LiF (right).
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LiF components in the liquid are almost independent of the third NaF component present with
less concentration at the eutectic point. Therefore, the grow dynamics of the solid system can
be described with relatively good precision by considering only the KF and LiF phases and
neglecting the third one. This is a valuable statement from the system design point of view,
since the solidification of a binary alloy is, in many aspects, simpler to treat than the soli-
dification of a ternary alloy.

The cross-diffusion process occurring in the liquid, starting from the release of solute in
two of the phases and ending with the absorption in third phase is shown in figure 8. For the
KF, the maximum concentration is achieved in the middle of the plates of LiF phase and the
minimum in the middle of the plates of the KF phase. Therefore, the average cross-diffusion
migration process of the KF component occurs from the center of the LiF phase to the center
of the KF phase. In addition, due to the velocity imposed on the z growth direction coming
from the evolution of the solid–liquid interface, the iso-concentration profiles are observed to
be advected in the growth direction. The exact reciprocal process happens for the LiF
component, in which the cross diffusion process take place from the center of the KF phase
towards the center of the LiF phase. For the NaF component, the cross diffusion process
occurs from the corners of the unit cell, in which the concentration of NaF is maximum,
towards the center of the cell in which the concentration is minimum.

As the two-dimensional concentration profiles are studied for larger distances from the
interface (i.e. increasing along the z* dimension), it is observed that the concentration profiles
are homogenized towards the eutectic composition of the components. In addition, it can be
noted that the homogenization is faster for NaF than for the other two components. This
is because the mean migration distance for this component is smaller than for the others.
Nevertheless, for z 1* , the relative defect of concentration c x y, , 1X * *( ( )
c c 10X
E

X
E 3) for all (x, y). Therefore, for practical applications in the solidification of this

system, it can be assumed that after z 1* the concentration field in the liquid is equal to the
original eutectic concentration.

The undercooling for the unit cell interface is analyzed on figure 9. The constitutional
undercooling is maximum for the right and left borders of the system, corresponding to the
middle of the plates of LiF and NaF, respectively. This can be explained by the fact that these
are the regions from which the released solute have to migrate the maximum distance to be
absorbed (or inversely the absorbed solute have been expelled from further away). The
curvature undercooling is higher where the concentration gradients are higher. Therefore, the
curvature undercooling is predominant in the bulk NaF phase and next to the contact points of

Figure 8. Three-dimensional concentration field for the components KF (left), NaF
(center) and LiF (right). The non-dimensional growth direction z* is also shown in the
graphs.
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the LiF and KF phases, where large concentration gradients exist. Even though, the surface
tensions for the system are high, the curvature undercooling is reduced to 1/2 of the con-
stitutional undercooling for the calculated solid phases distribution.

Finally, the total undercooling is computed as the sum of the constitutional and curvature
undercooling. It is observed in figure 9 that the total undercooling is approximately constant
for the three phases. This is expectable since large temperature gradients in the interface will
be smeared out by heat conduction parallel to the solid–liquid interface. The area averaged
total undercooling, defined by equation (20), recasting the interface temperature to dimen-
sional form, is −15.172 K.

Although the present analysis is useful to understand the growth dynamics of the solid
phases of a eutectic molten FLiNaK system, there are some underlying assumptions that limit
its applicability to real scenarios. First, the phases are assumed to steadily grow parallel to the
z direction, which in most cases is not the actual situation. As observed, the solidification
process for a ternary eutectics is a highly nonlinear process and, due to various instability
mechanisms, the phases are continuously rearranged as the solid phases growth [40]. In
addition, it have been assumed when deriving the interface boundary condition that the
concentration in the liquid next to the interface is equal to that of the eutectic composition.
While in the present model it was readily observed that the diffusion process in the liquid
modifies the concentration profiles. As shown in figure 7, the concentrations of the various
components in the liquid near to the solidification interface are still strongly dependent of this
initial hypothesis. Furthermore, it has not been assumed the presence natural convection due
to temperature and concentration gradients in the liquid. This may be a keystone effect in the
dynamics of the growth process since natural convection could have a large impact on the
concentration fields in front of the interface. Finally, the model describes the solidification
field once the system has arrived to steady growth conditions, assuming the interface to be a
planar front. However, it does not contain information about the initial stages of the solidi-
fication process. Therefore, for surmounting some of these issues, a more precise study of the
FLiNaK system is necessary. This is performed via a phase-field method in the next section.

3. Phase-field model

3.1. Methodology

The conserved quantities describing a solidification process are the concentration of species,
the energy and the linear momentum in the system [43]. Therefore, the numerical solution of

Figure 9. Undercooling for the unit cell T T x y,Eint * *( ). Constitutional undercooling
(left), curvature undercooling (center) and total undercooling (right).

Modelling Simul. Mater. Sci. Eng. 25 (2017) 074001 M Tano et al

15



this set of equations is, in principle, sufficient for the description of the solidification process.
However, from the numerical point of view, this type of simulations are strongly computa-
tional demanding, since they require an accurate tracking of the solid–liquid interface [57].
Therefore, during the past decades diffuse interface models have gained popularity [58] and,
among them, the phase-field method is being widely used for the studies of the solidification
phenomena [59]. In the present work, a thermodynamic consistent phase-field model is
propose for studying the solidification process of the ternary FLiNaK system.

As previously discussed, the solidified 3D domain (V R3) can be divided in inde-
pendent volumes V , each containing one of the solid phases. A phase-field function,

t V Rx, : 0, 1( ) [ ], is introduced for describing the solid field ν at a position Vx
and at a given time t R. When the value of the phase-field tx,( ) is equal to 1 it means that
the solid phase ν is present at the position x at time t and when it is equal to 0 that is not. The
values of the phase-field between 0 and 1 are related to interfaces between different phases.
Furthermore, a phase-field variable l can be introduced for describing the liquid phase. A
vector is constructed describing the phase-fields tx, , , , l( ) ( ). The constraint

11
4 is imposed on this vector, in order for this vector to represent a valid thermo-

dynamic state everywhere in the system. In a similar form, a concentration vector is intro-
duced for describing the concentration field of each of the components of the system

t c c cc x, , ,LiF KF NaF( ) ( ), subjected to the constraint c 1X X1
3 .

The equations for the evolution of the phase-field and concentration variable are derived
from a grand-potential functional Ψ [60], following the formalism developed in [15], which is
a function of the phase-fields , the concentration c and the temperature T,

T T a Vc c, , , , ,
1

d , 25
V

( ) ( ) ( ( ) ( )) ( )

where the first term in the rhs Tc, ,( ) is the grand-potential bulk density and the terms in
the parenthesis are the gradient energy density a ,( ) and the potential energy density
1 ( ), ò is a length scale parameter associated to the interface width. The last two terms are
introduced for representing the energetic cost associated to the formation of interfaces
between the phases.

The driving force for solidification is the dynamic reduction of the free energy in the
system. Using an ideal solution model [61], the free energy density f Tc, ,( ) of the system
can be expressed as the summation of the individual free energies for each of the components
of the system f T f Tc c, , , ,1

4( ) ( ). The free energy density for each of the phases
in the ideal solution model can be expressed as,

f T RTc c c L
T T

T
hc, , ln , 26

i
i i i i

E

E
1

3

( ) ( ( ) ( )) ( )

where Li is the latent heat of melting of component i, is the density of the phase assumed
constant, TE is the eutectic temperature of the system, R is the universal constant of gases and
h 3 22( ) ( ) is an infinitely continuously differentiable function used to describe the
transition between the liquid to solid for the phase ν. Since in the FLiNaK system each of
the phases is associated to an individual component, the melting heat for a phase is equal to the
melting heat of a component and, therefore, Li is independent of the phase. Furthermore,
the free energy of the liquid phase can be expressed as f T RTc cc, lni i i1

3( ) ( ), following
the ideal solution model. The bulk grad-potential density can then be derived as the Legendre
transformation of the free energy density.
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However, as initially noted by [62] for binary alloys and [15] for multicomponent sys-
tems, if the grand-potential is dependent on the concentration field, the surface energy of the
interfaces will be a function of the bulk free energy field in the system. This means that the
energy stored in the interfaces will be dependent on the model used for the bulk free energy
density and the thickness of the interface, leading to non-quantitative results. However, as
noted by [15] for a multicomponent system, if the original driving force of solidification

Tc, ,( ) is formulated in terms of the chemical potential
f

c
, the bulk and interface

contributions can be decoupled.
Finding a function relating the concentration and the chemical potential for the nonlinear

formulation of the free energy (26) is complicated and computational demanding. Therefore, a
simplified model is developed by approximating c c O c cln lni i

E c c

c i i
E 2i i

E

i
E( ) ( ) (( ) ),

where ci
E is the concentration of component i in the eutectic point. Defining the matrix

R x3 3 as RT cij ij i
E , where ij is the Kronecker’s delta function and the vectors

R3 such that RT cln 1i i
E( ( ) ) and RŁ 3 such that L T T TŁi i

E E( ) , the
second order approximation for the free energy (26) can be expressed as following,

c c cf T hc, , Ł . 27T T( ) ( ( )) ( )
The chemical potential can then be written in the following form,

c
f

h
c

2 Ł . 28( ( )) ( )

By using equation (28) an straight forward relation can be founded between the con-
centration and the chemical potential, which proves to be useful when deriving the equations
for the chemical potential conservation.

c h
1

2
Ł . 291( ( )) ( )

The global concentration vector can then be obtained by summing over the phases
c c1

4 and in a similar way the global chemical potential is written as 1
4 .

By replacing the concentration by equation (29) in the quadratic approximation of the free
energy (27) and by defining the bulk grand-potential as the Legendre transformation of the
free energy T f T c, , , , •T( ) ( ) , the bulk grand-potential can be expressed
in the following way,

T h h, ,
1

4
Ł Ł . 30T 1( ) ( ( )) ( ( )) ( )

The grand potential of the system can then be recast using the chemical potential in the
following form,

T T a V, , , , ,
1

d , 31
V

( ) ( ) ( ( ) ( )) ( )

The gradient energy density can be expressed as,

a q, , 32
, 1

4,4
2( ) ∣ ∣ ( )

( )

where is the surface tension between phases – and q is a
generalized gradient vector that is different from 0 at the solid–solid and solid–liquid
interfaces. This energy is associated to the necessary extra energy introduced by the gradient
of phase-fields in the system.
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The potential energy density of the interfaces can be expressed by a double and triple
obstacle potential as,

16
. 33

, 1

4,4

, , 1

4,4,4

( ) ( )
( ) ( )

The first term in the rhs is associated to the energy accumulated on interfaces between two
phases and the second one to the interfaces between three. This last term, allows avoiding
spurious third phases on binary interfaces. For avoiding violations on the constraints of the
phase-fields ( 11

4 and 0) during the evolution, the potential energy is taken to
infinity ( ) (a computationally large number) at the points where the constraints are
not satisfied. This energy is associated to the extra energy necessary for forming a new double
and triple interfaces caused by the surface energy between the phases of the system.

For describing the evolution of the phase-field variable a relaxed Allen–Cahn equation
[63] is used,

t
M T M T • , 34

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

where is a time relaxation parameter introduced for reducing the numerical time in the
solution of the system with respect to the real time of evolution and Mf is a mobility
parameter for the phase-field.

Inserting equation (25) in (34), the following equation is obtained for the evolution of the
phase-field ,

35

t
M T

a a T,
•

, 1 , ,
,

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )

( ) ( ) ( ) ( )

where λ is a Lagrange multiplier introduced in the equation in order to satisfy the constraint
11

4 . The Lagrange multiplier is introduced numerically based in the phase-fields at
time n 1( ) as 1n

1
4 1( ) .

In a similar form, an equation can be derived for the evolution of the concentration field
based in the grand-potential. However, since the concentration needs to be conserved during
the evolution, a Cahn–Hilliard equation [64] is used for the description of the evolution
concentration field,

c

t
D

c
J• • , 36c

i
i Ci

j1

4⎛
⎝⎜

⎞
⎠⎟( ) ( )

where c is a relaxation parameter for the time evolution of the concentration field and
DCi ( ) is the diffusion coefficient for the concentration field i in phase ν. Introducing
equation (25) in (37) yields

c

t
D

c
• , 37c

i
Ci

j
c

1

4⎛
⎝⎜

⎞
⎠⎟( ) ( )

where c 1c ı i
n

1
3 1( ) , is a Lagrange multiplier introduced analogous to the phase

evolution case in order to satisfy the constraint c 1ı i1
3 on the concentration field.

Since the decoupling between the interface energy and bulk thermodynamic potentials
requires a formulation based in the chemical potential an evolution equation for the chemical
potential has to be determined. By using the chain rule and equation (37) it can be noted that
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t t t T

T

t

D

c c c c

1
• . 38

T T

c
Ci c

, , ,

1

4

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
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⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥( ) ( )

Rearranging the above equation and by using relation (29) for the concentration, the
evolution equation for the chemical potential is derived in the following form,

L
t

D
h

t T
h

2
• Ł . 39

c
Ci c

1

4⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )

Usually an anti-trapping current is introduced in the chemical potential equation in order
to account for an artificial trapping of solute in the solid by the diffuse interface [65].
However, in the present case, the coupling introduced by the anti-trapping current was
observed to introduce artificial numerical oscillations, coming from the large surface tensions
involved in the FLiNaK system. Therefore, it was not considered and the artificial numerical
diffusion of the interfaces was systematically controlled for avoiding solute trapping effects to
affect the system evolution.

Analogous to the previous cases, the evolution for the temperature field can be derived
from the grand potential. This yield,

T

t T

T

J• •

• , 40

c Ti
1

4

1

4

⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟

( )

( ) ( )

where Cj is the thermal diffusivity coefficient for phase ν.
The general diffusion coefficient is defined as the average of the eigenvalues set of the

concentration diffusion matrix D Dave , Ci( ). In a similar form, the average thermal
diffusivity is defined as 1

4 1
4 . Assuming a growth velocity for the system V, the

characteristic length of the system can be defined as D VL . Using this quantities, the
physical variables of the system can be nondimensionalized as x x L* , L* ,
t tD 2L* , D 2L* and DC C

2L* . Additionally, defining the average latent
heat L L1

4 1
4 and the average density 1

4 1
4 , the phase-field energies are taken

to dimensionless form as T T Lc c, , , ,*( ) ( ) ( ), a a L, ,( ) ( ) ( )
and L( ) ( ) ( ). The concentration and temperature fields are nondimensionalized
as c c c cj j E E* ( ) and T T T TE E( ) . Then, the dimensionless chemical potential can

be expressed as i i i
E

i
E* ( ) , where i

E is c2 E E. Finally, the non-dimensional
concentration and thermal diffusivities are expressed as D D DCij Cij* and LeD Dj j* ,
where Le D is the Lewis number. By non-dimensionalizing the equations of evolution
for the phases (35), the chemical potentials (39) and the temperature (40), considering the
previously introduced dimensionless variables, the following dimensionless system of
equations describing the system evolution is obtained (note that forced or natural convection
in the liquid has not been considered),

41

t
T

a a T,
•

, , ,
,*

*
*

* *
*

* *
*
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The list of simulation parameters for the FLiNaK system are shown in table 3. The
interface surface tension values have been indirectly extrapolated from experiments and may
be subjected to errors. However, a sensitivity study has been performed by changing these
values and the results, presented in the next section, were not observed change substantially.
Therefore despite the uncertainties existing in the values of some of the physical parameters,
the set of values provided in table 3 can be considered as a reasonable starting point for the
study of the solidification dynamics of the FLiNaK system.

The domain and the boundary conditions used for the simulations are shown in figure 10.
In the x and y direction periodic boundary conditions are assumed, the length of the domain is
10 non-dimensional units in both directions (as the solidification process have been observed
to be diffusion limited this will allow to obtain approximately 10 phases in each direction). In
the z direction, a uniform heat flux (extracting heat from the system) is assumed at z 0*
while far field boundary conditions are used at z Lz* *. An initial gradient in the phase field
variables is imposed at z=0 for initially perturbing the system. It is assumed no con-

centration gradient in the z direction at z=0 and, therefore, 0
z z

f

zc
c

0 0* *
( )( ) .

Far field boundary conditions are as well used for the phase variables and the chemical
potentials at z L* . The numerical simulation is stopped before the far field boundary have a
significant effect on the solidification process.

The domain is decomposed on a structured regular mesh of 1000 1000 10 000( )
elements in the x y z, ,( ) directions. The initial concentration is determined by a Voronoi
tessellation method [69] following the eutectic composition for each of the phases. With the

Table 3. Summary of the parameters used for the phase-field models.

Parameter Value Reference

TE 727 (K) [39]
c c c, ,LiF KF NaFE E E[ ] [0.465, 0.420, 0.115] mol m 3( ) [39]
ll l l l

l

l

l

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

0.278 0.111 0.185
0.278 0.317 0.374
0.111 0.317 0.246
0.185 0.374 0.246

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
J m 2

[48]a [49]a [66]b

D D D D

D D D D

D D D D

D D D D

ll l l l

l

l

l

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

0 0 0
7.74 10 0 0
9.77 10 0 0

1.01 10 9 0 0

10

10

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥ m s2 1

[51]a [52]a

k k k, , , LLiF KF NaF[ ] [2.04, 0.77, 1.51, 0.92] W mK 1 T T@ E( ) [67]a

L L L, ,LiF KF NaF[ ] [2.38× 107, 9.54× 106, 1.34× 107] J kg−1 [50]
ò 1 10 6 m [68]c

a
Values extrapolated following the theoretical model.

b Surface tension of the inter-solid phases obtained by using the relative contact angles (values are
subjected to large uncertainties).
c Proposed value based on observations in experiments.
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generated concentration field a 2D phase-field simulation is performed in the base plane
(z 0* ) [70] in order homogenize the phase distribution. This allows to reduce the sensitivity
of the system to the initial conditions. In order to increase the speed in the simulations, a
pseudo-spectral method is implemented, where the x–y are solved in the Fourier space and the
z direction is solved by a compact 4th order finite difference scheme [71, 72]. This last aspect,
allows to reduce the numerical diffusion of the solid–liquid interface, decreasing the artificial
solute trapping and limiting the error introduced by not using an anti-trapping current.
Additionally, an adaptive mesh refinement box technique is implemented with an octree
method [73], in order to increase the mesh resolution close to the solid–liquid interface. The
simulations were done in 64(@2.5 GHz) cores and the total simulation time was of
approximately 48 h.

3.2. Results

The results for the obtained solidification field are shown in figure 11. A cooperative growth
is observed between the three solid phases. As previously predicted by the semi-analytical
model, it is observed that, once for steady grow conditions, the α and β phase solidifies as
long plates, whereas the NaF phase grows as oval-shaped columns between the other two
phases. During the solidification process, fibers of the solid phases are formed in the direction
of grow. Going forward in the z* direction, the fibers merge due to a reduction in the interface
gradient energy or split due to a reduction in the bulk free energy (the driving force of
solidification). The formed structure of fibers is observed to be continuous, i.e. there are no
branches that suddenly stop growing or are suddenly created. In order to understand the
dynamics of the growing process, it is proposed to study the process from the point of view of
the individual phases.

The grow process for the LiF( ) phase is shown in figure 12. Initially, when the
equilibrium have been reached with the 2D phase model in the base plane, the α phase is
distributed in small clusters with convex shape. This sort of shapes are formed because the
diffusion process in the 2D plane is overestimated with respect to the real one occurring in
three-dimensions, which have not been yet considered. The system searches, therefore, to
minimize the driving force of solidification. This situation is similar to what occurs during
the coarsening of solid nuclei next to a wall, since the diffusion processes are helped by the
adsorption and desorption of solute in the walls and the presence of the wall limits the
influence of the surface tension.

As the system grows in the z direction, the initial reduction in the driving force of
solidification caused by the presence of small nuclei occludes initially the effect of the

Figure 10. Domain and boundary conditions for the phase-field simulations.
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reduction in the gradient and potential. This is, for reducing the gradient and potential energy,
the fibers of the α phase will tend to merge and coarse as they grow in the z direction.
Nevertheless, this coarsening will increase the driving force of solidification. Since, initially,
the driving force and the chemical potential are low for the system in equilibrium; the system
has a big inertia for changing its configuration. However, as the solidification progress further
in the z* direction, the chemical potential rises as the initial equilibrium distribution is
perturbed. This results in the system actively minimizing its interfaces and going to the
previously observed thin-plate structure.

Figure 11. Simulation result for the coupled growth of phases obtained with a
1000 1000( ) resolution in the x–y direction. The LiF phase is shown in green,
the KF phase is sown in blue and the NaF is shown in gray (see online
version of the article for colors).

Figure 12.Grow process for the LiF phase. Top: 3D view of the formed structure.
Bottom: view of the cross sectional areas for the planes z 20* (left), z 100*
(center) and z 200* (right).
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While the system grows further in the z direction, it is observed that a perfect plate is not
formed, as expected by the reduction in the interface energy. The phenomenon is originated
by the presence of oscillatory instabilities in the growing process. While growing upstream,
the α fiber may reduce its diameter, while reducing the driving force, due to high differences
in the concentration fields in the liquid in front of the fiber with respect to the liquid that
surrounds it. As the fiber thins, the sink of solute will be reduced with the size of the fiber,
causing the external solute field to be more rapidly homogenized by diffusion processes.
Therefore, afterwards, the fiber will coarse back. This type of oscillatory behavior is present
over the whole domain of the FLiNaK system, since it should be continuously triggered by
the high values in the interface tensions.

The analysis of the grow of the KF( ) phase is similar to the one of the α phase.
However, the growing process for the gamma phase is different, since the phase solidifies as
columns between the plates of the two other phases. In addition, this columns have an oval-
shapped cross sectional area similar to the one predicted in the semi-analytical model. This
process is shown in figure 13. Initially, when solving the phase-field model in the 2D base
plane, once again, the diffusivity of the solutes is overestimated with respect to the 3D case
and a disperse phase with high connectivity and approximately equispaced clusters is formed
on the base plane. As the solid starts growing in the z-direction, the columns start to bend to
the space between the α and β plates, since these are the locations that reduce the driving
force of solidification. Once the columns migrate to the space between the plates, they will
form clusters, reducing the gradient and potential energy of the interfaces. As in the previous
case, these clusters do not have a perfect lens cross-sectional area because of the presence of
an oscillatory behavior in the system.

In order to extract condensed information from the grow process of the solid phases,
nearest neighbors statistics are used [74] (see figure 14). It can be seen that the amount of
nearest neighbors in the system is reduced for all the phases as solidification progresses in the
z direction, to finally reach a constant value in steady grow conditions. For the α and β

phases, initially the number of nearest neighbors is rapidly reduced as the clusters form plates
and after z 100 the reduction rate diminishes as the plates are coarsening. For the γ phase
the process is quite different. The amount of nearest neighbors reduces gradually as the
system starts to grow in the z direction and the columns bend between the alpha and beta
plates. Then, the average number of nearest neighbors for the phase decreases also slowly as
the columns coarse.

3.3. Condensation of the mixture parameters

From the phase-field model the average thermal conductivity of the solid phase, the diffusion
coefficient in the liquid phase and the average spacing between the phases can be extracted.

Since the solid structure formed during the solidification process is different in the
growth direction from that formed in the directions perpendicular to the growth one, the solid
conductivity is anisotropic. For carrying out the homogenization for the calculated solid field,
a fixed temperature difference is imposed in the normal planes to a given direction, while
adiabatic boundary conditions are imposed in the other two directions. Figure 15 shows an
example of the configuration for the homogenization procedure in the z-direction, while
Dirichlet boundary conditions are imposed at z 0* and z Lz* * by setting a fixed temp-
erature difference between these two planes, on the planes normal the x and y directions
adiabatic boundary conditions are used. The temperature field is solved for this problem
according to equation (40). The equivalent thermal conductivity in the z-direction is then
numerically computed as,
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Figure 13. Grow process for the NaF phase. Top: 3D view of the formed
structure. Bottom: view of the cross sectional areas for the planes z 20* (left),
z 100* (center) and z 200* (right).

Figure 14.Average number of nearest neighbors for the cross section of the system as a
function of z*. The number of nearest neighbors for a phase is the number of
independent phases of the same kind that lies within a circle of radius R 1* in the
cross section. The average is calculated over all the independent phases of a kind over
the cross section. The oscillatory behavior in the number of nearest neighbors indicates
an oscillatory behavior in the solid phases of the system in the z direction.
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The thermal conductivity in the other two directions is numerically calculated in a similar
form. Finally, the thermal conductivity of the system is expressed as a second rank tensor in
the following form,
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interesting to notice that the average value of the thermal conductivity ktr 0.5801

3
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W mK 1 is very close to the experimental measured value for the thermal conductivity of
solid FLiNaK (0.6 W mK 1) at the eutectic temperature.

In a similar form, the diffusion coefficient in the liquid next to the interface is homo-
genized for maintaining the solute flux. For doing so, the system is let to evolve until the it
reaches a stationary state and then the diffusion coefficient is homogenized as,
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The obtained value for the diffusion coefficient is D 8.82 10 m s10 2 1.
Finally, the separation between the formed solid phases is needed in order to know the

separation of the columns that may penetrate into the solid–liquid field during the solidification
process. The separation of each phase is calculated as the average distance between the centers of
phases of the same type for the plane z Lz* *. The average separation of the system is then
computed as the sum of the separation of the phases of the same type weighted with the area of
the phase. The obtained value for the separation between phases is 3.5sp L.

4. Conclusion

In the first section of the present work, a semi-analytical model for the solidification of the
ternary eutectic FLiNaK salt has been developed for steady growth conditions. The dis-
tribution of the solid phases formed during the solidification process has been determined by
minimizing the energetic cost during this process (interface undercooling). It was found that

Figure 15. Configuration used for the homogenization of the thermal conductivity in
the z direction. A fixed temperature difference is imposed between the planes normal to
the z direction and adiabatic boundary conditions are used on the planes normal to the x
and y directions. A heat flow is established in the system in the z direction.
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the solidified structure consists of thin long plates of the LiF and KF phases with the NaF
phase present in the form of columns between these plates. By analyzing the undercooling of
the solidification interface, it was observed that the energy implied in solute migration is
approximately 2 times larger than the energy necessary for interfaces formation during the
solidification process in the FLiNaK system.

In the second part of the present work, the solidification of eutectic molten FLiNaK was
studied in the mesoscale by using a phase-field model, solved by means of a pseudo-spectral
method in a representative domain. It was observed that when the solidification process
reaches steady state, the solid structure computed closely resembles the one previously
obtained with the semi-analytical model. During the evolution towards steady solidification,
the LiF and KF phases start growing as columns and then merge in order to form plate-like
structures. The numerical simulations also show that the NaF phase starts growing in thin
columns and, as solidification progresses, these columns bend towards the junctions of the
plates of the other two phases. Afterwards, these columns cluster parallel to these junctions,
growing as columns of a bigger mean diameter. During the growing process, it is observed
that the interaction between forces involved in solute redistribution in the liquid and in the
solid–solid interface generation, due to surface tension, produces oscillatory patterns in the
growth of the three phases.

Finally, the thermal conductivity tensor, the solute diffusion coefficient for the liquid and
the spacing between the phases were numerically computed from the calculated solid
microstructure. A highly anisotropic thermal conductivity have been observed in the solid,
being approximately 8 times larger in the growth direction of the solid than in the
perpendicular directions. The condensed parameters can be introduced in a computationally
less expensive macroscale mixture model. This will allow to compute the large scale soli-
dification scenarios for molten salts found in industrial applications and, in particular for the
present work, for the design of different components in the MSFR.

As a future perspective, fluid convection caused by temperature and solute natural
convection needs to be considered. In addition, forced convection may be introduced in the
solidification process to generate solidification conditions closer to the ones existing in the
nuclear and solar concentration industries. The present work is therefore intended to be a first
step toward the development of realistic and accurate solidification models for molten salts.

Acknowledgements

This project has received funding from the Euratom research and training program
2014–2018 under grant agreement No 661891. The content of this article does not reflect the
official opinion of the European Union. Responsibility for the information and/or views
expressed in the article lies entirely with the authors.

ORCID iDs

Mauricio Tano https://orcid.org/0000-0003-3417-3869

References

[1] Le Brun C 2007 Molten salts and nuclear energy production J. Nucl. Mater. 360 1–5
[2] Ignacio Ortega J et al 2008 Central receiver system solar power plant using molten salt as heat

transfer fluid J. Sol. Energy Eng. 130 024501

Modelling Simul. Mater. Sci. Eng. 25 (2017) 074001 M Tano et al

26



[3] Janz G J 2013 Molten Salts Handbook (Amsterdam: Elsevier)
[4] LeBlanc D 2010 Molten salt reactors: a new beginning for an old idea Nucl. Eng. Des. 240

1644–56
[5] Merle-Lucotte E, Allibert M, Brovchenko M, Heuer D, Ghetta V, Laureau A and Rubiolo P 2016

Introduction to the physics of thorium molten salt fast reactor (MSFR) concepts Thorium
Energy for the World (Dordrecht: Springer International Publishing) pp 223–31

[6] Rubiolo P R, Tano Retamales M, Giraud J and Ghetta V 2016 Overview of the salt at wall thermal
exchanges (swath) experiment Trans. of the American Nuclear Society vol 115 (Las Vegas, NV,
6–10 November)

[7] Tano Retamales M, Rubiolo P and Doche O 2016 Development of solidification models for
molten salts coolants 8th Int. Conf. on Multiscale Materials Modeling

[8] Stefanescu D 2015 Science and Engineering of Casting Solidification (Dordrecht: Springer
International Publishing)

[9] Elliott R 2013 Eutectic Solidification Processing: Crystalline and Glassy Alloys (Amsterdam:
Elsevier)

[10] Hunt J D and Jackson K A 1966 Binary eutectic solidification Trans. Metall. Soc. AIME 236
11–29

[11] Zheng L L, Larson D J Jr and Zhang H 2000 Revised form of Jackson–Hunt theory: application to
directional solidification of MnBi/Bi eutectics J. Cryst. Growth 209 110–21

[12] Parisi A and Plapp M 2010 Defects and multistability in eutectic solidification patterns EPL
(Europhys. Lett.) 90 26010

[13] Choudhury A, Yabansu Y C, Kalidindi S R and Dennstedt A 2016 Quantification and
classification of microstructures in ternary eutectic alloys using 2-point spatial correlations and
principal component analyses Acta Mater. 110 131–41

[14] Voller V R 2008 An enthalpy method for modeling dendritic growth in a binary alloy Int. J. Heat
Mass Transfer 51 823–34

[15] Choudhury A and Nestler B 2012 Grand-potential formulation for multicomponent phase
transformations combined with thin-interface asymptotics of the double-obstacle potential Phys.
Rev. E 85 021602

[16] Hötzer J, Jainta M, Steinmetz P, Nestler B, Dennstedt A, Genau A, Bauer M, Köstler H and
Rüde U 2015 Large scale phase-field simulations of directional ternary eutectic solidification
Acta Mater. 93 194–204

[17] Založnik M and Combeau H 2010 An operator splitting scheme for coupling macroscopic
transport and grain growth in a two-phase multiscale solidification model: I. Model and solution
scheme Comput. Mater. Sci. 48 1–10

[18] Bragard J, Karma A, Lee Y H and Plapp M 2002 Linking phase-field and atomistic simulations to
model dendritic solidification in highly undercooled melts Interface Sci. 10 121–36

[19] Tan L and Zabaras N 2007 A level set simulation of dendritic solidification of multi-component
alloys J. Comput. Phys. 221 9–40

[20] Bhattacharya A, Kiran A, Karagadde S and Dutta P 2014 An enthalpy method for modeling
eutectic solidification J. Comput. Phys. 262 217–30

[21] Swaminathan C R and Voller V R 1992 A general enthalpy method for modeling solidification
processes Metall. Trans. B 23 651–64

[22] Le Bars M and Worster M G 2006 Interfacial conditions between a pure fluid and a porous
medium: implications for binary alloy solidification J. Fluid Mech. 550 149–73

[23] Boettinger W J, Warren J A, Beckermann C and Karma A 2002 Phase-field simulation of
solidification Annu. Rev. Mater. Res. 32 163–94

[24] Steinmetz P, Hötzer J, Kellner M, Dennstedt A and Nestler B 2016 Large-scale phase-field
simulations of ternary eutectic microstructure evolution Comput. Mater. Sci. 117 205–14

[25] Steinmetz P, Kellner M, Hötzer J, Dennstedt A and Nestler B 2016 Phase-field study of the pattern
formation in Al–Ag–Cu under the influence of the melt concentration Comput. Mater. Sci. 121
6–13

[26] Hötzer J, Kellner M, Steinmetz P, Dietze J and Nestler B 2016 Large-scale phase-field simulations
of directional solidified ternary eutectics using high-performance computing High Performance
Computing in Science and Engineering 2016 (Berlin: Springer) pp 635–46

[27] Choudhury A 2015 Pattern-formation during self-organization in three-phase eutectic solidifica-
tion Trans. Indian Inst. Met. 68 1137–43

Modelling Simul. Mater. Sci. Eng. 25 (2017) 074001 M Tano et al

27



[28] Suzuki A, Saddock N D, Jones J W and Pollock T M 2005 Solidification paths and eutectic
intermetallic phases in Mg–Al–Ca ternary alloys Acta Mater. 53 2823–34

[29] Lu J, Ding J and Yang J 2010 Solidification and melting behaviors and characteristics of molten
salt in cold filling pipe Int. J. Heat Mass Transfer 53 1628–35

[30] Giaconia A, de Falco M, Caputo G, Grena R, Tarquini P and Marrelli L 2008 Solar steam
reforming of natural gas for hydrogen production using molten salt heat carriers AIChE J. 54
1932–44

[31] Winegard W C, Majka S, Thall B M and Chalmers B 1951 Eutectic solidification in metals Can. J.
Chem. 29 320–7

[32] Akamatsu S, Plapp M, Faivre G and Karma A 2002 Pattern stability and trijunction motion in
eutectic solidification Phys. Rev. E 66 030501

[33] Stubican V S and Bradt R C 1981 Eutectic solidification in ceramic systems Annu. Rev. Mater. Sci.
11 267–97

[34] Sangster M J L and Dixon M 1976 Interionic potentials in alkali halides and their use in
simulations of the molten salts Adv. Phys. 25 247–342

[35] Villalón T, Su S and Pal U 2016 Surface properties of molten fluoride-based salts Advances in
Molten Slags, Fluxes, and Salts: Proc. 10th Int. Conf. on Molten Slags, Fluxes and Salts 2016
(Berlin: Springer) pp 597–605

[36] Gheribi A E and Chartrand P 2016 Thermal conductivity of molten salt mixtures: theoretical
model supported by equilibrium molecular dynamics simulations J. Chem. Phys. 144 084506

[37] Blander M 1986 Thermodynamic properties of molten salt solutions Technical Report CONF-
8608157-2 Argonne National Lab., IL, USA

[38] Croker M N, Fidler R S and Smith R W 1973 The characterization of eutectic structures Proc. R.
Soc. A 335 15–37

[39] Beneš O and Konings R J M Thermodynamic properties and phase diagrams of fluoride salts for
nuclear applications J. Fluor. Chem. 130 22–9

[40] Choudhury A, Plapp M and Nestler B 2011 Theoretical and numerical study of lamellar eutectic
three-phase growth in ternary alloys Phys. Rev. E 83 051608

[41] Smeulders R J, Mischgofsky F H and Frankena H J 1986 Direct microscopy of alloy nucleation,
solidification and ageing (coarsening) during stir casting J. Cryst. Growth 76 151–69

[42] Guo X 1986 Fundamentals of Solidification (Switzerland: Trans Tech)
[43] Dantzig J A and Rappaz M 2009 Solidification 1st edn (Lausanne: EPFL Press)
[44] Stefanescu D M 2015 Thermodynamic conceptsequilibrium and nonequilibrium during

solidification Science and Engineering of Casting Solidification (Berlin: Springer) pp 7–27
[45] Luckhaus S 1990 Solutions for the two-phase stefan problem with the Gibbs–Thomson law for the

melting temperature Eur. J. Appl. Math. 1 101–11
[46] Bale C W et al 2016 Factsage thermochemical software and databases, 2010–2016 Calphad 54

35–53
[47] Gal I J and Paligorić I 1982 Calculation of phase diagrams of binary salt mixtures with a common

anion J. Chem. Soc. Faraday Trans. I 78 1993–2003
[48] Goodisman J 1980 Surface tensions of molten salt mixtures J. Colloid Interface Sci. 73 115–23
[49] Lumsden J 1961 Thermodynamics of molten mixtures of alkali-metal halides Discuss. Faraday

Soc. 32 138–46
[50] Chase M W Jr 1998 NIST-JANAF Thermochemical tables 4th edn J. Phys. Chem. Ref. Data.

Monograph 9 1051–1213
[51] Umesaki N, Iwamoto N, Tsunawaki Y, Ohno H and Furukawa K 1981 Self-diffusion of lithium,

sodium, potassium and fluorine in a molten LiF+ NaF+ KF eutectic mixture J. Chem. Soc.
Faraday Trans. I 77 169–75

[52] Iwamoto N, Tsunawaki Y, Umesaki N, Furukawa K and Ohno H 1978 Self-diffusion of fluorine
and lithium in molten flinak Trans. JWRI 7 5–10

[53] Rubinshteuin L I 1971 The Stefan Problem vol 27 (Washington, DC: American Mathematical
Society)

[54] Bhattacharya A and Dutta P 2013 An enthalpy-based model of dendritic growth in a convecting
binary alloy melt Int. J. Numer. Methods Heat Fluid Flow 23 1121–35

[55] Wang Z and Huang G P 2002 An essentially nonoscillatory high-order pade-type (ENO-pade)
scheme J. Comput. Phys. 177 37–58

[56] Wen Z and Yin W 2013 A feasible method for optimization with orthogonality constraints Math.
Program. 142 397–434

Modelling Simul. Mater. Sci. Eng. 25 (2017) 074001 M Tano et al

28



[57] Vu T V, Tryggvason G, Homma S, Wells J C and Takakura H 2013 A front-tracking method for
three-phase computations of solidification with volume change J. Chem. Eng. Japan 46 726–31

[58] Subhedar A, Steinbach I and Varnik F 2015 Modeling the flow in diffuse interface methods of
solidification Phys. Rev. E 92 023303

[59] Steinbach I 2013 Phase-field model for microstructure evolution at the mesoscopic scale Annu.
Rev. Mater. Res. 43 89–107

[60] Plapp M 2011 Unified derivation of phase-field models for alloy solidification from a grand-
potential functional Phys. Rev. E 84 031601

[61] Smith J M 1975 Introduction to chemical engineering thermodynamics PhD Thesis Rensselaer
Polytechnic Institute

[62] Kim S G, Kim W T and Suzuki T 1999 Phase-field model for binary alloys Phys. Rev. E 60 7186
[63] Allen S M and Cahn J W 1979 A microscopic theory for antiphase boundary motion and its

application to antiphase domain coarsening Acta Metall. 27 1085–95
[64] Elliott C M and Songmu Z 1986 On the Cahn–Hilliard equation Arch. Ration. Mech. Anal. 96

339–57
[65] Mullis A M, Rosam J and Jimack P K 2010 Solute trapping and the effects of anti-trapping

currents on phase-field models of coupled thermo-solutal solidification J. Cryst. Growth 312
1891–7

[66] Morel C F 1970 Surface tensions of molten salts and contact angle measurements of molten salts
on solids Technical Report EUR–4482 Commission of the European Communities

[67] Ishii Y, Sato K, Salanne M, Madden P A and Ohtori N 2014 Thermal conductivity of molten alkali
metal fluorides (LiF, NaF, KF) and their mixtures J. Phys. Chem. B 118 3385–91

[68] Tostmann H and Freyland W 1993 Rapid solidification of microemulsions of liquid alloys in
molten salts J. Non-Cryst. Solids 156 551–4

[69] Liu Y, Wang W, Lévy B, Sun F, Yan D-M, Lu L and C Yang 2009 On centroidal voronoi
tessellation energy smoothness and fast computation ACM Trans. Graph. (ToG) 28 101

[70] Lim H, Abdeljawad F, Owen S J, Hanks B W, Foulk J W and Battaile C C 2016 Incorporating
physically-based microstructures in materials modeling: bridging phase field and crystal
plasticity frameworks Modelling Simul. Mater. Sci. Eng. 24 045016

[71] Bueno-Orovio A, Kay D and Burrage K 2014 Fourier spectral methods for fractional-in-space
reaction-diffusion equations BIT Numer. Math. 54 937–54

[72] Singh B K, Arora G and Kumar P 2016 A note on solving the fourth-order Kuramoto–Sivashinsky
equation by the compact finite difference scheme Ain Shams Eng. J. (https://doi.org/10.1016/
j.asej.2016.11.008)

[73] Barad M and Colella P 2005 A fourth-order accurate local refinement method for Poissonʼs
equation J. Comput. Phys. 209 1–18

[74] Das A and Mittemeijer E J 2000 Simulation of eutectic solidification structures of binary alloys: a
multiparticle diffusion limited aggregation model Metall. Mater. Trans. A 31 2049–57

Modelling Simul. Mater. Sci. Eng. 25 (2017) 074001 M Tano et al

29


