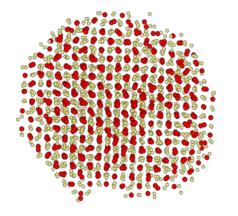
This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 661891

SAMOFAR Final Meeting 4 July 2019

PSI contribution


PSI contribution to SAMOFAR Project 2.1 Thermodynamic data of salts

by Sergii Nichenko

Goal

Application of Molecular Dynamic for:

- Calculation of viscosity
- Thermal conductivity calculation
- Excess properties calculations

Path

Difficulty

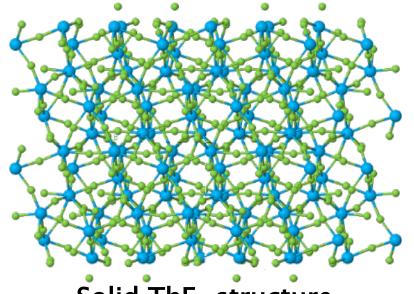
The idea was not working

Development

Force Field Model, Genetic algorithm

Optimization

fit FF for: LiF, KF, NaF, UF₄ , ThF₄ , PuF₃ almost there


Calculate

Thermal conductivity Viscosity Excess properties

Difficulties

Initially selected Force Field model

Morse Potential
$$V_{ij}=D_iD_j\left(e^{-2(a_i+a_j)(r_i+r_j-r_{ij})}-2e^{-(a_i+a_j)(r_i+r_j-r_{ij})}
ight)$$

Solid ThF₄ structure

SAMOFAR

Problem (BIG)

Initially selected Force Field model was not able to reproduce structural properties of complex tetrafluoride systems (ThF₄ and UF₄) – very **complex**

That's why

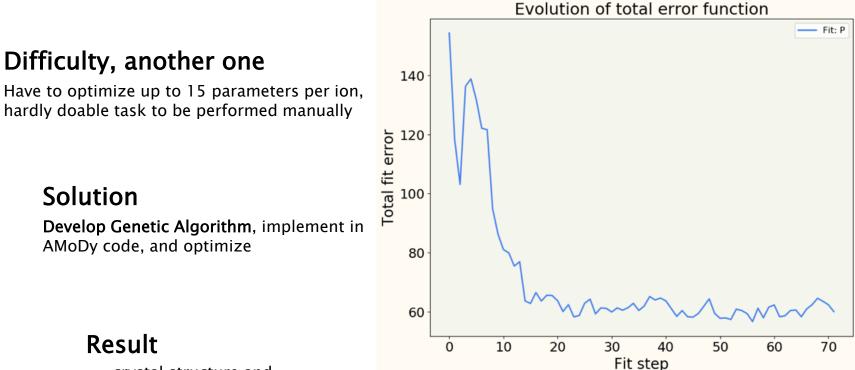
No molecular dynamic modelling of solid ThF₄ and UF₄ systems are **published**

Goal

Develop Force Field model capable of reproducing solid structures of complex systems

Developed Force Field model

Total energy
$$E = \sum_{i} \left(F_{i}(\rho_{i}) + \frac{1}{2} \sum_{j \neq i} V_{ij}(R_{ij}) \right)$$


Idea

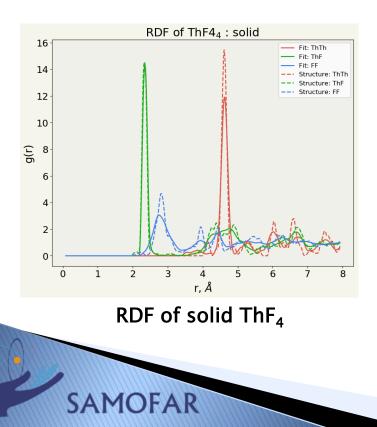
Include **MEAM** potential as a part of the Force Field Model to account for **multibody interactions** in the systems

5

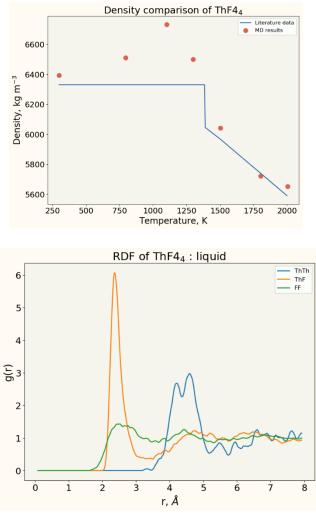
Morse Potential
Pairwise interactions
$$V_{ij} = D_i D_j \left(e^{-2(a_i+a_j)(r_i+r_j-r_{ij})} - 2e^{-(a_i+a_j)(r_i+r_j-r_{ij})} \right)^2$$

MEAM
Multibody contribution
to the total energy
 $(\rho_i^2)^2 = \sum_{\alpha\beta} \left(\sum_{j\neq i} x_{ij}^{\alpha} x_{ij}^{\beta} \rho_i^{a(2)}(R_{ij}) \right)^2 - \frac{1}{3} \left(\sum_{j\neq i} \rho_j^{a(2)}(R_{ij}) \right)^2$
 $(\rho_i^3)^2 = \sum_{\alpha\beta\gamma} \left(\sum_{j\neq i} x_{ij}^{\alpha} x_{ij}^{\beta} x_{ij}^{\gamma} \rho_j^{a(3)}(R_{ij}) \right)^2$
SAMOFAR

Optimization task


- 1. crystal structure and
- 2. density of the solid and liquid phase at various temperatures.

The fit of the parameters to different structures and densities at different temperatures implies also a fit of the parameters to the thermal expansion and melting temperatures of compounds.

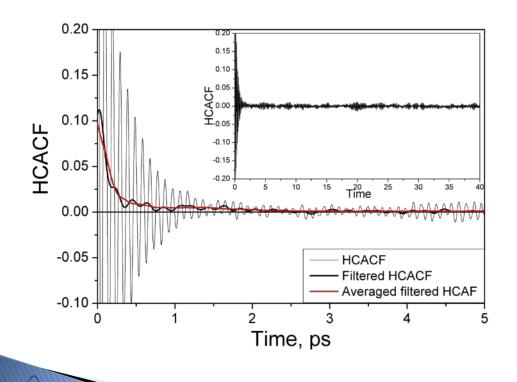

Results: RDF and density profiles

Result

Developed algorithm allowed allows for both an accurate description of **Radian Distribution Function** (RDF) and **density profiles** for solid and liquid phases

Density (peculiar) of solid ThF₄

RDF of liquid ThF₄


Approach

SAMOFAR

Thermal Conductivity and Viscosity Calculations

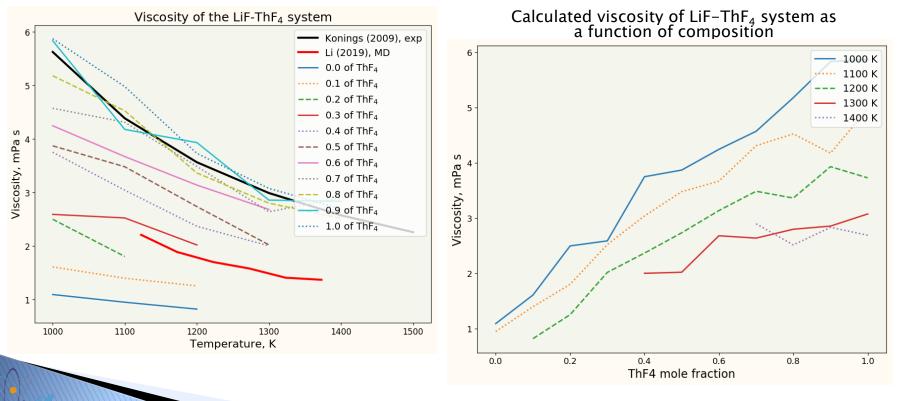
The Green-Kubo approach is used for the thermal conductivity and viscosity calculations.

The viscosity calculation routine was developed and tested

Thermal conductivity

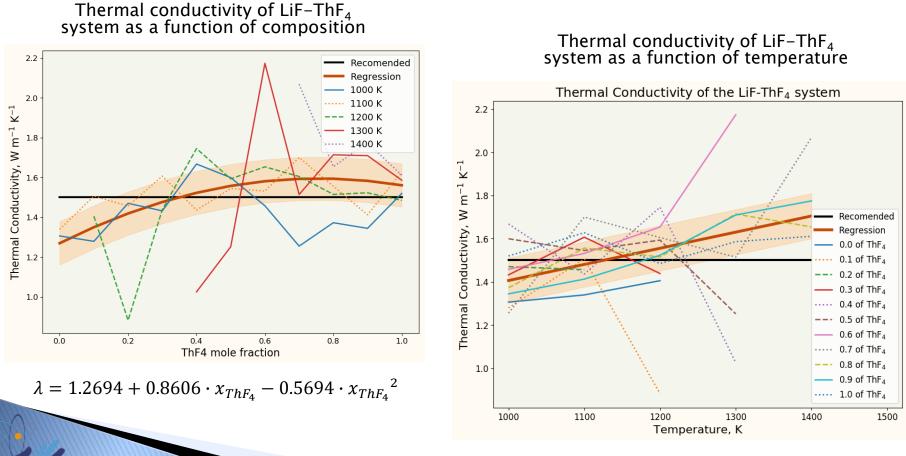
$$\lambda = \frac{1}{3Vk_bT^2}\int \langle J(t)\cdot J(0)\rangle dt$$

Viscosity


$$\eta = rac{V}{k_b T} \int \langle P_{xy}(t) \cdot P_{xy}(0)
angle dt$$

Results: Viscosity Calculations

The Green-Kubo approach was used to calculate viscosity of LiF-ThF₄

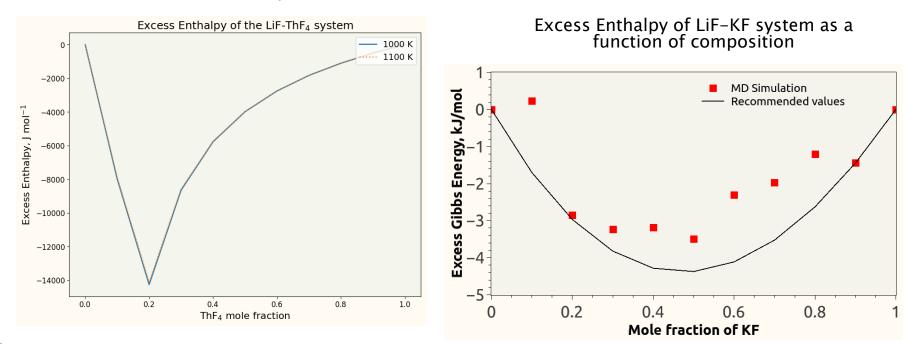

Calculated viscosity of LiF-ThF₄ system as a function of temperature

SAMOFAR

Results: Thermal conductivity calculations

The Green-Kubo approach was used as well to calculate thermal conductivity of LiF-ThF_4

SAMOFAR


 $\lambda = 0.6591 + 0.0007466 \cdot T$

Results: Excess Properties

Excess properties have been calculated using the developed Force Field model

Excess Enthalpy of LiF-ThF₄ system as a function of composition

SAMOFAR

Recap and Outlook

Recap

- Advanced Force Field model has been developed with a capability to reproduce complex tetrafluoride structures together with the Genetic Algorithm routine to fit the parameters
- Viscosity calculation routine has been developed
- Force Field model parameters fit has been done for LiF, ThF₄, UF₄, PuF₃. KF and NaF are still being refined
- > Viscosity and thermal conductivity calculation for the LiF-ThF₄ system were obtained
- Excess properties (as a "by-product") for LiF-ThF₄ and KF-LiF systems have been calculated

Outlook

- Extend viscosity calculations to the Li-Th-U-F system
- As well as thermal conductivity calculations for the Li-Th-U-F system