Uncertainty Quantification
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UQ on MSFR neutronics
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UQ techniques

PROs CONs
No curse of dimensionality, rich information High computational burden
Non intrusive, no code modifications Convergence
GP T Ayailable in Serpent-2
PROs CONs
Low computational burden Limited amount of information retrieved

_ _ _ Difficulty to capture non-linearities
Widely adopted, both in stochastic and o o
deterministic codes Statistical convergence limited by the number

of energy group

XGPT = Available in Serpent-2

Continuous-energy capabilities Difficulty to capture non-linearities

Richer amount of information Higher computational burden than GPT
than GPT (it can produce response
distributions)




XGPT workflow
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UQ setup

Library selection: Jeff-3.3
(more recent, complete
covariance information for the
main nuclides of interest for
MSFR, Th?32 and U233)

MSFR model: 3D, full-core
simulation, uniform
temperature of 900 K,
equilibrium salt composition

Output: k_eff
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Data uncertainties for Th2432
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Conclusions and perspectives

Uncertainty on k. due to Th432 and U233 s
significant (> 1000 pcm)

Kinetic integral parameters and multi-group
cross sections deserves more investigations
Continuous-energy and finer multi-group
covariances improve results quality

Exploiting the latest Serpent-2 update, more
complete calculations can be performed




Multi-physics UQ method
development
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PCE-based approach

PCE method is applied to the 2D CNRS benchmark
case, which is representative of the MSFR physics

Thermal-hydraulic and neutronics are analyzed
separately and coupled

Among stochastic inputs, the most relevant are:
Volumetric heat transfer coefficient (uniformly distributed)
Volumetric expansion coefficient (normally distributed)

Salt kinematic viscosity (normally distributed)
Total delayed neutron fraction (normally distributed)
Mean fission macroscopic cross section (normally distributed)




Thermal-hydraulic analysis example
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POD-Adaptive ROM methodology

Algorithm Combines Proper Orthogonal Decomposition (POD) with
the locally adaptive sparse grids

The adaptive sparse grids selects the snapshots for the POD in an
iterative manner

Initialization: set the center point

generate the forward points of the

important poimts update the POD modes and the SEERERuEEREay

ROM
sample the high-fidelity model

perform SVD on the new snapshot

matrix
test the ROM at the same points

update the snapshot matrix with the

important points

x
o 02t
is the error < : :
find points with error > a threshold o1k
tolerance '

1 1 1 1 1 1 3¢ 1 - 1 3L
o
0 01 02 03 04 05 06 07 08 09 1
| yes Ty

terminate




Application to MSFR benchmark

27 Parameters: Power, thermal expansion coefficient, lid velocity,
heat transfer coefficient, viscosity, 6 groups fission cross sections, 8

groups A4, 8 groups Al
Output: neutron flux, temperature, Aleff

POD-adaptive algorithm sampled the reference model 472 times to
build the ROM
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Time savings:
1.5 hour => 1ms
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imated pdf for the maximum temperature and kleff after testing the ROM on 10000 Latin
gesampled (LHS) points . The 1000 validation points from the full model are shown for reference.



Conclusions and perspectives

New methodologies developed for building ROM
of multi-physics systems with many parameters
Methods are fully non-intrusive (models can be
treated as black box)

Extreme savings can be obtained during run-
phase

Analysis of full MSFR core ongoing
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