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The Molten Salt Fast Reactor

Modelling needs

The MSFR is a circulating fuel reactor, => the
precursors are transported by the liquid fuel =>
stronger coupling between neutronics and fluid-
dynamics.

A helium bubbling system is foreseen for a more
efficient removal of the gaseous fission products,
and as a possible option for the reactivity control.

The compressibility of the mixture may have an
important effect on dynamics behavior of the
MSFR, expecially in fast, super-prompt-critical
transients.
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Need to develop/extend and
benchmark code systems




TUD multi-physics tool Fupet

Sy radiation transport code (PHANTOM-SN) coupled to RANS solver
(DGFlows), both in house tools

Discontinuous Galerkin FEM for space discretization. Can handle
structured/unstructured meshes, and support local refinement

2"d order BDF schemes for time discretization.

DGFlows: solves low-Ma RANS equations, with pressure-correction.
Can handle properties fully variable with temperature

PHANTOM-SN: solves the multi-group Boltzmann transport equation
coupled to delayed neutron precursors equations.

Extensive  capabilities: principal and
multimodal calculations of criticality/time-
eigenvalues; both regular and generalized Serpent/SCALE
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PoliMI multi-physics tool

A multiphysics model has been developed, including:

Multi-group neutron diffusion equations;
Multi-group SP3 neutron transport equations;

A two-phase, compressible thermal-hydraulics model, based on a “two-
fluids’’ (or Euler-Euler) approach;

Transport equations for the moving precursors.

Solver structure and coupling strategy

o ———— 10

This model has been implemented into an | | e B I
OpenFOAM solver to study the accidental e 'S
transients of the MSFR, the impact of the I I
helium bubbling system and the fuel | i |

compressibility effects.

I| Solve for flux |I
Solve for precursors |I

Solve for decay heat |

|| neutronics
iterations

Update power source |I
I| Solve for energy
ronics
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PSI multi-physics tool :

Based on the OpenFOAM C++ library

Cross-section
Spatial kinetics
Fission products

Correlations | Dregion
gulb—grid scale Sp3 (On gomg)

olvers |
Applications BoitdEiRhnREadgion

Aelvbamegs BNBselver
DHP (on going)

Extensive use of Run Time Selection mechanism!
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PSI multi-physics tool PS5

Freezing model

Homogeneous enthalpy-porosity
Energy source models phase indicator «
Momentum source models flow resistance
Iteration in order to search for freezing front
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KIT and EdF tools SIT <<eor

SIMMER code: review and modification of salt
properties (to  match MSFR  thermal
conductivity)

Analytical models to simulate draining




Code2code benchmarking D Fooar
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The CNRS benchmark LT—ED
o
Simplified benchmark for multiphysics codes, still representative of
MSFR. Developed at CNRS by M. Aufiero, A. Laureau, P. Rubiolo.

Goal: easily test the capabilities of multi-physics codes with respect
to the characteristics of MSR systems (fuel motion and strong
multiphysics coupling).

Step-by-step approach, three phases: (0) single physics, (1) code
coupling with increasing complexity and (2) transient analysis

Uz

Main characteristics: Y
Prescribed nuclear data (condensed into 6 groups) i
No Doppler feedback, only density |
Laminar flow, Boussinesqg approximation |
Simple 2D geometry A ] A

Constant thermodynamic properties

Y

x I



CNRS benchmark- Phase 0
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PSI - Step 1.1 - Delayed neutron source

DN source (s ' m ?)

CNRS benchmark - Phase 1
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CNRS benchmark- Phase 2

Delayed neutron
source

Temperature elocity

e

From steady-state with U;;; = 0.5ms-!
and P = 1 GW, vary heat transfer
coefficient according to a sine wave
(amplitude 10%, variable frequency)
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Code2code benchmarking

Conclusions

Benchmark served its purpose

Results of participants in good agreement.
Between a 0.1 and a few percent max

Whenever there is a difference these can be
explained:

Meshing and order of approximation

Physics model used (diffusion vs transport, S, vs S¢)

Codes proved to be suitable to
simulate MSFR behavior




MSFR transients H

Two types of transients have been selected

Fuel circuit transients

Transients involving the emergency draining tank I

Core

liquid gas separation
and sampling system
for salt reprocessing

vessel

Emergency-draining opening

Molten salt collector

pumps

Draining shaft Salt dispenser

heat exchangers
Cooling space

fertile blanket Fuel slab

o Inert salt
bubble injection

Draining vessel



Fuel circuit transients

ULOFF: The mass flow reduction is simulated with an
exponential decay of the pump head with a time
constant of 5 s

ULOHS - 1 (very conservative): step reduction of heat
transfer coefficient (HTC) to zero

ULOHS - 2 (more realistic): vary HTC and secondary
average T in time, to mimic reduction of mass flow
rate of intermediate circuit and ECS (to 20%). Again,
exponential trends with 5s time constant




Fuel circuit transients

TLOP: Combination of ULOFF and ULOHS (quick
reduction to zero of heat removal)

RAA: Step insertion of reactivity: 1.2$ (super-
prompt critical) and 0.5%

OVC: Same approach as for ULOHS, but opposite:
vary HTC and secondary average T to simulate fast
increase in extracted power




EDS transients

Draining of salt, after melting of freeze-valves.

Salt cooling in the draining tank
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Steady-state conditions oo O

Steady-state conditions simulated using the 3D reactor geometry
(1/16 wedge).

Blanket and reflectors included in TUD model, because of SN
transport code. PoliMl and PSI diffusion codes impose albedo
boundary conditions.

Thermal exchange with reflectors and blanket neglected
(adiabatic bc)

Pump

TUD: tetrahedral mesh, locally Reflector
(hierarchically) refined near walls
for CFD calculations. Shared master
mesh, exchange of data through
Galerkin projection Core

Heat
exchanger

PoliMI/PSI: hexahedral mesh

Reflector Blanket




Steady-state conditions

Fuel velocity (m/s)

ES.SS

2.87-10%

Nominal power 3000 MW E E. o
Nominal flow rate 4.5 m3/s B
Fuel cold leg temperature 923 K = e
Fuel hot leg temperature 1023 K E,
HX pressure drop 4.5 bar
Intermediate coolant temperature 908 K
Fuel composition (% mol.) LiF (77.5)
ThF (6.6)
UFa (12.3) n Power density (W/m?)
TRU-F3 (3.6)




Pressure, velocity, and temperature

8.2e+00
7 J
6

velocity (m/s)
n
|
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250000 —
200000 —
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100000
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Delayed neutron precursors

8th DNP (prec/m?3)
3.02-1015

1st DNP (prec/m3)
1.40-1017

15
1.38.1017 2.26-10

1015
1.36-1017 1.51-10

14
1.33-1D1? 7.56-10

mmmlll
m'llllllllllllllllm

1012
1.31-1017 2.32-10




ULOF transient

Exponential reduction to zero of the pump head, with T = 5s

Max temperature (K)
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ULOHS transients (1 and 2)

1) Stepwise reduction to zero of the HX heat transfer coefficient

2) Exp. reduction to 20% of interm. and ECS mass flow rate, with 7 = 5s
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Analysis of the He bubbling

Evaluation of the void reactivity coefficient

-— Bubble extraction

raemenwe) - The yoid reactivity coefficient of the bubbles has
been evaluated. Two approaches can be used:

— 1022.8

= 9895

Heat exchanger

Assuming a uniform bubble distribution ( );

— 9563

Bubble;;;m Calculating the bubble distribution with the
multiphysics solver (blue).

Void fraction (%)

4 | Visible differences arise between the two
s '~ approaches. Spatial and neutron importance effects
4 = have a strong impact on the void reactivity feedback.
% é 219
24
’ Core average Multiplication factor a, (pem/%
void fraction Uniform bubble Real bubble Uniform bubble
Bubble injection 8%) gi;tgg'?;iﬁon gi;tg;'l;ziﬁon dist-riburion

0.437 0.96511 0.96444 -171.8

0.876 0.96434 0.96308 -180.2

1.308 0.96360 0.96179 -181.5

(evaluated with the SP3 neutronics model)




Analysis of the He bubbling

Monte Carlo comparison

For comparison, a Montecarlo model of the same 3D
geometry has been realized with Serpent 2, importing the
bubble spatial distribution calculated by the OpenFOAM
solver.

Core average Multiplication factor a, (pem/%)
void fraction Uniform bubble Real bubble Uniform bubble

(%) distribution distribution distribution

0 0.97110 + 0.00005 0.97110 + 0.00005 -

0.437 0.97042 + 0.00005 0.96980 + 0.00005 -165.1+17.2

0.876 0.96970 + 0.00005 0.96855 + 0.00005 -169.7 £ 8.6

1.308 0.96904 + 0.00005 0.96731 + 0.00005 -167.4+ 5.8

Good agreement is obtained with the OpenFOAM
calculations (differences < 9%).

Again, the void reactivity feedback depends on the
bubble distribution.

This consideration is not affected by the method we
choose to model neutronics.




EDS transients

Water-cooling well

Draining shaft

l Partition block

Fuel salt

Emergency-draining tank casing

Karlsruher Institut fiir Technologie

Tasks:

1. drainage of the fuel salt into an
emergency draining system (EDS).

2. Decay heat remove in EDS.

Input from WP1:

1. Detailed design of core+EDS.

2. Thermophysical properties of Salt,
structure mateials, etc. (solid, liquid
and vapor phase).



Reactor draining SIT

Analytical KIT model

Analytical model developed at KIT to compute draining time

Draining time: after which no salt remains in the core and the
tube that connects the core to EDT

Simplified geometry employed for analytic calculations

Analytical model based on mass and energy conservation
equations + correlations for friction factors 5 7

i A
A i A

Assumption: freeze-plug fully melted vmﬁdéh(t)/dt
(otherwise, dramatic increase of draining time) _ ="t/ A

h(t)

Particular functions considered:

draining time vs draining tube diameter; + K I

L+H-h(t)

draining time vs draining tube length; d

- draining time vs damage degree of freeze plug =

Vtuhe



Reactor draining SIT

Analytical KIT model
Drainage Time VS Surface Height Measured from the Core Top

2500

Tube Diamter=0.2m | S / . ‘ Vm"ﬁdéh(t)/dt
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/ . 1
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Draining Time: ca. 95s



Reactor draining

Analytical KIT model

Drain Tube Diameter & Drain Time

400
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Huge increase for small diameter o
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Reactor draining SIT

Analytical KIT model
Drain Tube Length & Drain Time

h(t) "

V,,.=dh(t)/dt
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though the wall friction is higher for
longer tube, the draining time is smaller
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Reactor draining

Goal = model of the draining of the tank through 1 or 16
orifices (over 16 orifices)

8 Routine storage tanks

Water cooling system Fuel transfer system
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Reactor draining <seor

From steady state: instantaneous stop of pumps and 16 opened orifices

Time=100.000046 ime=101. Tlme—llﬁ 000023
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Reactor draining

Comparison of the transients with 1 and 16 orifices:

80000
70000

60000

50000

— — = Draining tang 16 orifices

2 Core 16 orifices
g 40000 - = = Draining tank 1 orifice
3 Core 1 orifice
20000 Poly. (Draining tank 1 orifice)
‘‘‘‘‘‘‘‘‘ Poly. (Core 1 orifice)
20000
10000 R,\_,\_

< — B
l —p

With the assumption of a continuous draining for 1 orifice: +32§

130 140 150 160
Time (s)



Salt behavior in draining tank =<IT

Numerical and analytical calculations of salt cooling in EDT

EDT design: based on the concept described in the project

Hexagonal cooling rods surrounded by the fuel to be cooled

Draining shaft —d4=

Fuel -

The inert salt provides additional grace time
Melting latent heat

Volume of the tank: 36 m3

Double of the amount of fuel to be relocated

A simplified geometry for a EDT “cell” is considered in the
following



Salt behavior in draining tank =<IT

Numerical analyses with SIMMER

Transient analyses with SIMMER on salt behavior in the draining
tank: design modifications are needed.

The thermal conductivity

i . AY gty of inert salt is too small
Pl 2000 oiling | ~
1800 inert sal
b / ';;E::ET Therefore the Decay Heat
1500 )”/ is not effectively
oo/, transferred to the inert
! / i
1200 9 Salt
Inert salt  MS (/
T — Therefore the liquid fuel
temperature increases

steadily.




Salt behavior in draining tank =<IT

Numerical analyses with SIMMER

Alternative coolants such as Pb can be used instead of inert salt.

- 800
38T1me 7200.067871 [145642 —-—ﬂ-——a—-—éeTzL{G Time=7200.018066 [145641]
(r 1%3 826 9] aTLCWIK
825 e LI(3.3)
241 750 ( 5 ﬁ/
N
iy 820l //
SJ 700 v
= 7
= RISt
LN 650
2 ndl * 810 ;
coolant ? Rud "
Radial 600O o0 4000 7200.07 808757 9 11 13 151617 13 19 20
Time(s) Theta(-)
Pb Temp. SteelTemp.

Buffer coolant (Pb) + 2nd coolant (water):
Long term safety can be insured.




Salt behavior in draining tank =<IT

New Analytical model

A new analytical model was developed that shows possible dimensions for
EDT cells

1600 Time=0s
EDT geometry 1400
Analytical model 1200
Suggested different dimensions o
Fuel salt inter-assemblies gap: 2.8 cm 2
Inert salt thickness: 5 cm 'E; 800
2 600
Transient 1D calculations
Estimated grace time: >3 h
Draining is reversible ° -
Steel safety limit never exceeded o s e o o o oos
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2300

i W o |+ . 3 . 2000
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2100 - ]

Inter-SA gap freezing
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Time (h)
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Conclusions

New codes have been developed or extended

Code-to-code benchmarking proved the tools are

able to reproduce accurately the characteristics of
the MSFR

Steady state and transient conditions have been
simulated

Both analytical models and numerical tools have
been exploited to simulate reactor draining and
salt cooling in the EDS
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