SAMOFAR Final meeting

4 July 2019

Overview of the work realized at IPNO

- ► Electrochemical behavior of uranium, iodine and zirconium in LiF-ThF₄ salt
- Synthesis of ThF₄
- Proposition of a preliminary coefficient transfert database used to calculate the decay heat in the chemical plant
- Corrosion studies of CINVESTAV samples and influence of the salt redox potential on corrosion

Overview of the work realized at IPNO

- ► Electrochemical behavior of uranium, iodine and zirconium in LiF-ThF₄ salt
- Synthesis of ThF₄
- Proposition of a preliminary coefficient transfert database used to calculate the decay heat in the chemical plant
- Corrosion studies of CINVESTAV samples and influence of the salt redox potential on corrosion

Zr in the inventory of the MSFR core

Thermodynamic calculations

- No gaseous state: Zr is not removed by He bubbling and fluorination
- Electroreduction or reductive extraction = good way but ZrF₂ can be a problem : check its stability
- Zr can be removed by precipitation of ZrO₂

Experimental study

Experimental study

- ZrF₄ is the only one soluble oxidation state in LiF-ThF₄
- ZrF₄ is reduced to metal state in the electroactivity range of the fuel salt

Reactivity of zirconium with oxides

$$2\text{ThOF}_2 + \text{ZrF}_4 \rightarrow \text{ZrO}_2 + 2\text{ThF}_4$$
 $\Delta G = -83.316 \text{ kJ}$

Activity coefficient of ZrF₄

$$\log \gamma(ZrF_4) = \left[E_{Zr/Th} - E^{\circ}_{ZrF4/Zr}\right] \frac{4F}{2.3RT} + 4\log a(F^{-}) - \log x(ZrF_4)$$

 $\log \gamma(\mathsf{ZrF}_4) = -4.33$

Conclusion

Zr can be removed from the fuel salt by electrolysis on a solid cathode before removing An and Ln by reductive extracion.

Efficiency of the extraction has to be determined by experimental measurements.

Influence of the redox potential on the corrosion

Hastelloy C276

Without E control

10 μm

ULTRA 55 - SCCME EHT = 15.00 kV Signal A = AsB Date : 2 May 2019

WD = 8.5 mm Mag = 1.00 k X File Name = Ech-1_10.tif

2 weeks immersion in a mixed chloride-fluoride salt at 600°C

With E control

Influence of the redox potential on the corrosion

Stainless steel AISI 304

Without E control

2 weeks immersion in a mixed chloride-fluoride salt at 600°C

With E control

Thank you for your attention

