

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 661891

SAMOFAR Final Meeting July 4-5, 2019, Delft, The Netherlands

Synthesis and electrochemical study of actinides of interest in fluoride media

P. Souček, A. Rodrigues, D. Rodrigues

European Commission, Joint Research Centre Directorate G - Nuclear Safety and Security Nuclear Fuel Safety Unit, Karlsruhe, Germany

European Commission

SAMOFAR project

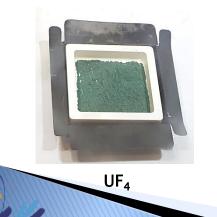
- Task 5.1: Evaluation of nuclide inventory at various stages in the chemical plant
 - 1) Synthesis of actinide fluorides for the electrochemical studies
 - 2) Electrochemical study of selected actinides of interest in LiF-ThF₄ melt (= *MSFR fuel salt*)
 - 3) Experimental study on reductive extraction for clean-up of the fuel salt
- Synthesis of actinide fluorides for the electrochemical studies
 - Development of method for synthesis/purification of sufficient amounts of pure ThF₄ for preparation of the LiF-ThF₄ melt
 - Development of method for synthesis of high purity AnF_x of interest (U, Pu, Am)
- Electrochemical study of selected actinides of interest in LiF-ThF₄ melt
 - Electrochemical studies of selected actinides of interest leading to determination of reduction mechanism, diffusion coefficients, standard potentials and activity coefficients

Synthesis of UF₃, ThF₄ and PuF₃

- Synthesis of ThF₄ and PuF₃
 - synthesis of ThF₄ in amount needed for electrochemistry in LiF-ThF₄ (app. 30 g/experiment) successfully achieved using larger batches (15 g of oxide)
 - 62.6 g and 35.5 g of ThF₄ synthesised for SAMOFAR
 - synthesis of PuF₃ in amount needed for electrochemistry (app. 1 g/experiment)
 - 2.5 g of PuF_3 synthesised

Synthesis procedure for UF₃

- solid-gas reaction of UF₄ with H₂ gas at elevated temperatures
- UF₄ powder (green) inserted in a nickel (99.5 %) boat
- optimized reactions are carried out in a flow of H₂ (600 ml/min)
- main problem is to avoid UF₃ dissociation


UF₄(s) + 1/2H₂(g) → UF₃(s) + HF(g) T = 600 / 800 °C $\Delta G = +71.96 / +57.70 \text{ kJ/U}$ 4UF₃(s) → U + 3UF₄(s) T = 600 / 800 °C $\Delta G = +63.68 / +63.05 \text{ kJ/U}$

Synthesis of UF₃

• Synthesis in BN (boron nitride) boats

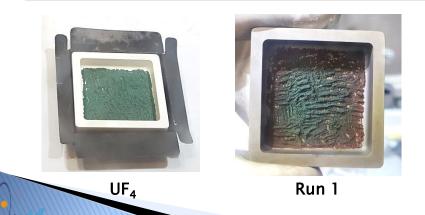
- Run 1 and 2 is with BN-HP-P and run 3 is with BN-AX05

Run	Т (°С)	Time (h)	Flow condition	Initial mass (g)	After mass (g)	XRD analysis
1	800	12	50 ml.min ⁻¹ above boat H ₂ 6% in Ar (ITU) + 20 ml.min ⁻¹ Ar (ITU)	1.022	0.917	Х
2	800	62	90 ml.min ⁻¹ above boat H ₂ 6% in Ar (ITU)	0.883	0.693	64% UF ₃ / 23% UO ₂ / 13% UF ₄
3	800	120	85 ml.min ⁻¹ above boat H ₂ 6% in Ar (pure bottle) + 30 ml.min ⁻¹ Ar (ITU)	1.034	0.830	85% UF ₃ / 15% UO ₂

SAMOFAR

Run 1

Run 2


Run 3

Synthesis of UF₃

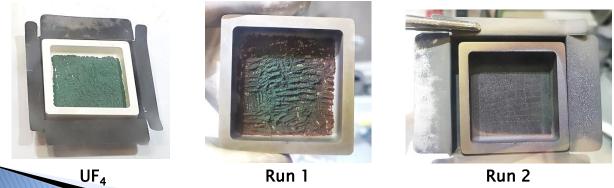
• Synthesis in BN (boron nitride) boats

- Run 1 and 2 is with BN-HP-P and run 3 is with BN-AX05

Run	T (°C)	Time (h)	Flow condition	Initial mass (g)	After mass (g)	XRD analysis
1	800	12	50 ml.min ⁻¹ above boat H ₂ 6% in Ar (ITU) + 20 ml.min ⁻¹ Ar (ITU)	1.022	0.917	х
2	800	62	90 ml.min ⁻¹ above boat H ₂ 6% in Ar (ITU)	0.883	0.693	64% UF ₃ / 23% UO ₂ / 13% UF ₄
3	800	120	85 ml.min ⁻¹ above boat H ₂ 6% in Ar (pure bottle) + 30 ml.min ⁻¹ Ar(ITU)	1.034	0.830	85% UF ₃ / 15% UO ₂

SAMOFAR

Run 2

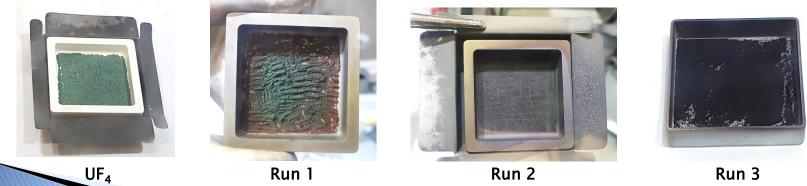

Run 3

Synthesis of UF₃

• Synthesis in BN (boron nitride) boats

- Run 1 and 2 is with BN-HP-P and run 3 is with BN-AX05

Run	T (°C)	Time (h)	Flow condition	Initial mass (g)	After mass (g)	XRD analysis
1	800	12	50 ml.min ⁻¹ above boat H ₂ 6% in Ar (ITU) + 20 ml.min ⁻¹ Ar (ITU)	1.022	0.917	х
2	800	62	90 ml.min ⁻¹ above boat H ₂ 6% in Ar (ITU)	0.883	0.693	64% UF $_3$ / 23% UO $_2$ / 13% UF $_4$
3	800	120	85 ml.min ⁻¹ above boat H ₂ 6% in Ar (pure bottle) + 30 ml.min ⁻¹ Ar(ITU)	1.034	0.830	85% UF ₃ / 15% UO ₂


Synthesis of UF₃

SAMOFAR

• Synthesis in BN (boron nitride) boats

- Run 1 and 2 is with BN-HP-P and run 3 is with BN-AX05

Run	T (°C)	Time (h)	Flow condition	Initial mass (g)	After mass (g)	XRD analysis
1	800	12	50 ml.min ⁻¹ above boat H ₂ 6% in Ar (ITU) + 20 ml.min ⁻¹ Ar (ITU)	1.022	0.917	x
2	800	62	90 ml.min ⁻¹ above boat H ₂ 6% in Ar (ITU)	0.883	0.693	64% UF ₃ / 23% UO ₂ / 13% UF ₄
3	800	120	85 ml.min ⁻¹ above boat H ₂ 6% in Ar (pure bottle) + 30 ml.min ⁻¹ Ar (ITU)	1.034	0.830	85% UF ₃ / 15% UO ₂

Run 2

Run 1

Run 3

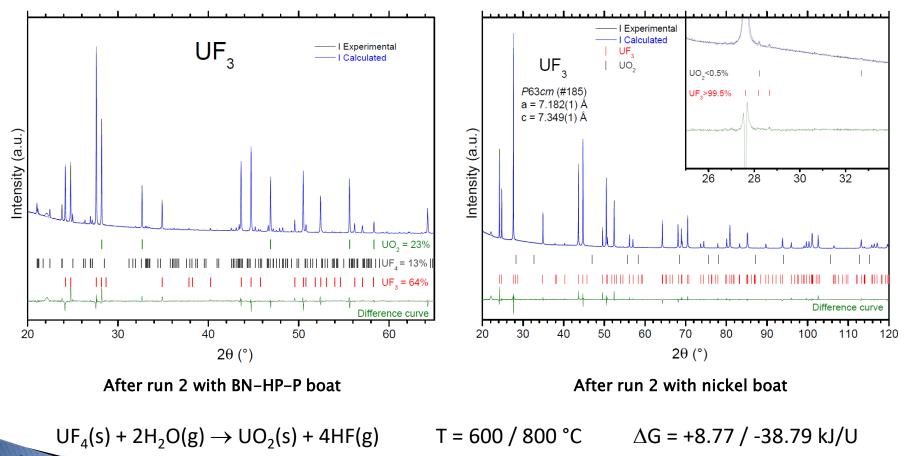
7

Synthesis of UF₃

• Synthesis in nickel boat

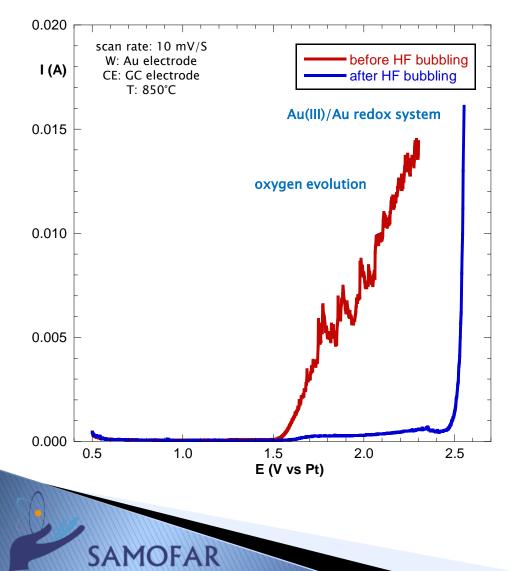
SAMOFAR

Run	T (°C)	Time (h)	Flow condition	Initial mass (g)	After mass (g)	XRD analysis
1	600	14	600 ml.min ⁻¹ below boat H ₂ 6% in Ar (pure bottle)	1.022	1.007	х
1+	800	14	600 ml.min ⁻¹ below boat H ₂ 6% in Ar (pure bottle)	1.007	0.856	30% UF ₃ / 70% UF ₄
1++	800	38	600 ml.min ⁻¹ below boat H ₂ 6% in Ar (pure bottle)	0.825	0.765	64% UF ₃ / 37% UF ₄
1+++	800	15	600 ml.min ⁻¹ below boat H ₂ 6% in Ar (pure bottle)	0.526	0.513	UF ₃ with less than 0.5% of UO ₂
2	800	40	600 ml.min ⁻¹ below boat H ₂ 6% in Ar (pure bottle)	1.081	0.978	UF ₃ with less than 0.5% of UO ₂



 UF_3

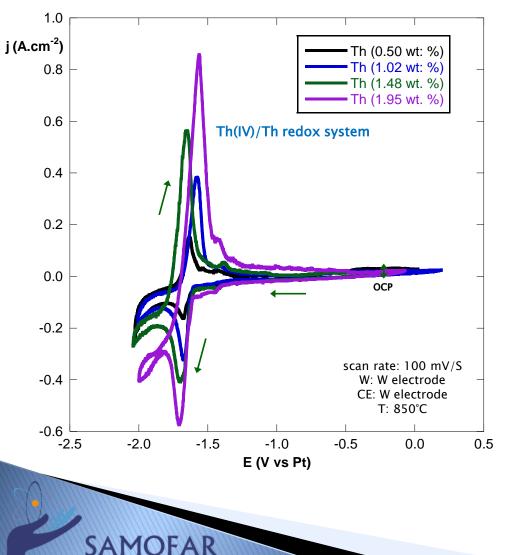
Synthesis of UF₃


SAMOFAR

• XRD analysis

Electrochemistry in molten fluorides

Cyclic voltammetry (CV) in LiF-CaF₂ (79.5-20.5 mol%)

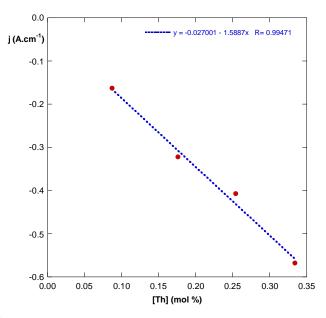


Initial stage, development and optimisation of the methods for preparation and purification of the carrier melt LiF-CaF₂ established

bubbling of HF gas directly to the melt for
120 minutes

- bubbling of **Ar gas** to remove the dissolved excess of HF gas

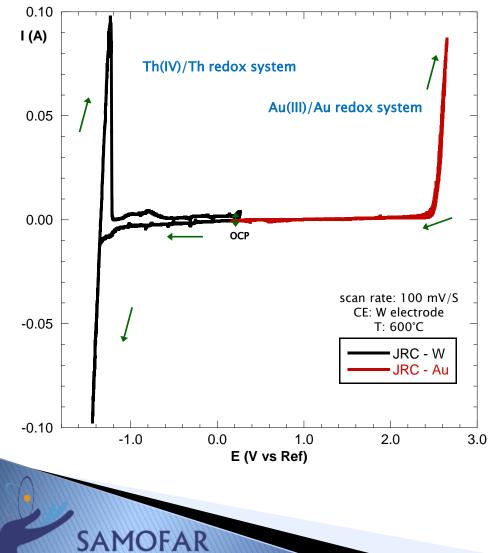
- **HF gas treatment** proven to be the most effective



Cyclic voltammetry (CV) in LiF-CaF₂ (79.5-20.5 mol%)

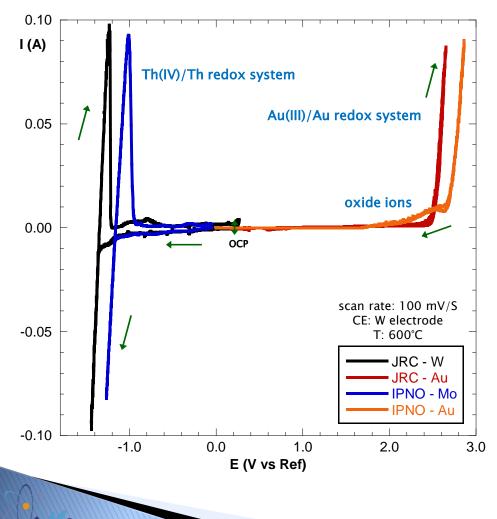
- two batches of synthesis ThF₄ are analysed
(XRD and DSC don't show any impurities)

batch A for two first addition of ThF₄ and
batch B for the next two addition


- **batch A** seems to be better regarding the electrochemical response

$LiF + e^- = Li_{(s)} + F^-$ 0.6 $E_{(\text{LiF/Li})} = E_{\text{LiF/Li}}^{0} + \frac{2,3\text{RT}}{F} \log \frac{a(\text{LiF})}{a(\text{F})} a(\text{Li})$ j (A.cm⁻²) 0.4 - Th (1.02 wt. %) $ThF_4 + 4e^- = Th_{(s)} + 4F^-$ 0.2 Th(IV)/Th redox system $E_{(ThF_4/Th)} = E_{(ThF_4/Th)}^0 + \frac{2,3RT}{4F} \log \frac{a(ThF_4)}{a(F^-)^4 a(Th)}$ 0.0 OCP $\Delta \mathbf{E} = \mathbf{E}_{\text{LiF/Li}}^{0} + \frac{2,3\text{RT}}{\text{F}} \log \frac{a(\text{LiF})}{a(\text{F})} - \mathbf{E}_{(\text{ThF}_4/\text{Th})}^{0} - \frac{2,3\text{RT}}{4\text{F}} \log \frac{a(\text{ThF}_4)}{a(\text{F})^4 a(\text{Th})}$ -0.2 $a(ThF_4) = x(ThF_4) \gamma(ThF_4)$ -0.4 -0.6 $\Delta E = -0.452 V$ a(LiF)=0.798 $x(ThF_4) = 1.76 \ 10^{-3}$ Li(l)/Li redox system scan rate: 100 mV/S -0.8 W: W electrode $a(ThF_4) = 1.74 \ 10^{-5}$ CE: W electrode T: 850°C $\gamma(\text{ThF}_4) = 9.88 \ 10^{-3}$ -1.0 ∟ -2.5 -2.0 -1.5 -1.0 -0.5 0.0 *LiF-ThF₄ *LiF-CaF, *FLiNaK E (V vs Pt) 600°C 850°C 600°C $\log \gamma(\text{Th}F_{4})$ -1.80/-2.62 -2.01 -6.54 $x(ThF_4)$ *24/20 mol% *0.18 mol% *1.07 mol% SAM

Activity coefficient of ThF₄

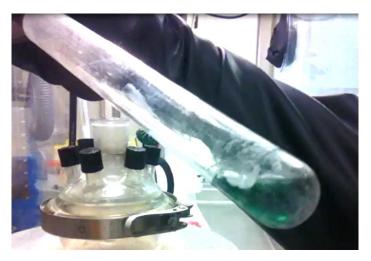

Cyclic voltammetry (CV) in LiF-ThF₄ (77-23 mol%)

- melt of LiF-ThF₄ (77-23 mol%) coming from synthesis of ThF₄ by fluorination

- electrochemistry recorded **without** purification of the melt at 600°C

SAMOFAR

Cyclic voltammetry (CV) in LiF-ThF₄ (77-23 mol%)


- melt of LiF-ThF₄ (77-23 mol%) coming from synthesis of ThF₄ by fluorination

- electrochemistry recorded **without** purification of the melt at 600°C

- comparison between CV recorded at JRC and IPNO

- **no trace of oxide ions** and background cathodic current looks similar

Thank you for your attention

T=600°C LiF-ThF₄-UF₄ (77.5-21.5-1.0 mol%)

SAMOFAR