This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 661891

SAMOFAR final Meeting 4 – 5 July 2019

European Commission

WP 5 Safety evaluation of the chemical plant

Task 5.1 Evaluation of nuclide inventory at various stages in the chemical plant Main achievements during the project

P. Souček, A. Rodrigues, D. Rodrigues

European Commission, Joint Research Centre Directorate G - Nuclear Safety and Security Nuclear Fuel Safety Unit, Karlsruhe, Germany

Task 5.1Evaluation of nuclide inventory at various stages in the chemical plant

- 1) Synthesis of actinide fluorides for the electrochemical studies
- 2) Electrochemical study of selected actinides of interest in LiF-ThF₄ melt
- 3) Experimental study on reductive extraction for clean-up of the fuel salt

Task 5.1 Evaluation of nuclide inventory at various stages in the chemical plant

1) Synthesis of actinide fluorides for the electrochemical studies

- Development of method for **synthesis of high purity AnF_x** of interest (U, Pu, Am)
- Development of method for synthesis/purification of sufficient amounts of pure ThF_4 for preparation of the LiF-ThF₄ melt

- **1)** Synthesis of actinide fluorides for the electrochemical studies
 - Experimental equipment designed, manufactured, optimised and successfully operated

- Ar glove box, oxygen and moisture content kept < 5 ppm
- The glove box is connected with a pure hydrogen fluoride gas line
- Inconel fluorination reactor (up to 1200°C, 15 g batch, flow-through)
- Non-reactive boats inserts to contain the fluorinated material: BN AX05

Europe-unique installation – possibility to handle gram scale of higher actinides in combination with pure hydrogen fluoride gas

SAMOFAR

- 1) Synthesis of actinide fluorides for the electrochemical studies
 - Methods for synthesis of ThF₄, UF₄, PuF₃ and UF₃ developed, optimised, implemented and verified

• Precursors

- High surface stoichiometric UO₂, ThO₂ and PuO₂ (crystal sizes 30-140 nm)
- Prepared by low-temperature calcination of the oxalates (600-800 C)

• Synthesis procedure

- Solid-gas reaction of the oxides with pure HF gas at elevated temperatures
- Oxide powder inserted in a BN-AX05 or Nickel boats
- Reactions are carried out in a flow of HF (50 ml/min) and inert carrier gas Ar (100 ml/min)
- Molar excess of HF about 3-5

$$\begin{split} & UO_2(s) + 4HF(g) \to UF_4(s) + 2H_2O(g) & T = 450 \ C \\ & ThO_2(s) + 4HF(g) \to ThF_4(s) + 2H_2O(g) & T = 600 \ C \\ & PuO_2(s) + 3HF(g) + 1/2H_2(g) \to PuF_3(s) + 2H_2O(g) & T = 550 \ C \ fluorination \ / \ 600 \ C \ reduction \\ & UF_4(s) + 1/2H_2(g) \to UF_3(s) + HF(g) & T = 800 \ C \ (flow \ of \ H_2 \ 600 \ ml/min) \end{split}$$

- 1) Synthesis of actinide fluorides for the electrochemical studies
 - Methods for synthesis of ThF₄, UF₄, PuF₃ and UF₃ developed, optimised, implemented and verified
- Analytical scheme
 - gravimetric (mass balance, typical yield >99 th. %)
 - XRD (structure, purity)
 - DSC (melting point, purity)
 - ICP-MS (metal based purity)

XRD pattern of the synthesized phase pure PuF₃

DSC determination of the melting temperature of the eutectic composition PuF₃-LiF (21-79 mol%)

- Results
 - UF₄, ThF₄ and PuF₃ synthesised in a very high purity > 99% phase pure, > 99.9% metal base (no traces of oxides detected, purity based on the uncertainty of the analytical methods) in amounts enough for thermodynamic and electrochemical studies
 - UF₃ synthesised in purity > 99% phase pure (traces of UO₂ detected by XRD < 0.5 wt.%)

SAMOFAR

- 1) Synthesis of actinide fluorides for the electrochemical studies
 - Methods for synthesis of ThF₄, UF₄, PuF₃ and UF₃ developed, optimised, implemented and verified

Task 5.1 Evaluation of nuclide inventory at various stages in the chemical plant

2) Electrochemical study of selected actinides of interest in LiF-ThF₄ melt

• Electrochemical studies of selected actinides of interest leading to determination of reduction mechanism, diffusion coefficients, standard potentials and activity coefficients

- 2) Electrochemical study of selected actinides
 - Experimental equipment designed, manufactured, optimised and successfully operated

- Ar glove box, oxygen and moisture content kept < 5 ppm
- HF gas line can be used for the melt purification

SAMOFAR

- Electrolyser for electrochemistry in molten fluoride media in a vertical furnace (T up to 1000 C, gastight, corrosion resistant)
 - Standard three-electrode set-up / multifunctional purposes

- 2) Electrochemical study of selected actinides
 - Preparation of the electrochemically pure carrier melts developed and optimised
 - Mixing of the end members (e.g. LiF+CaF₂ / LiF+ThF₄)
 - Slow melting overnight, possibly bubbling of Ar (proven as unnecessary)
 - Bubbling of HF (5-10 ml/min, 60 min) followed by bubbling of Ar to remove the HF

Linear Sweep voltammetry of the pure LiF-CaF₂ melt before and after HF bubbling, 10 mV/s, PtO₂/O²⁻ quasi-ref., 850°C

> Cyclic voltammetry on W and Au electrodes of the pure **LiF-ThF₄ melt** 100 mV/s, PtO₂/O²- quasi-ref., 650°C

- 2) Electrochemical study of selected actinides
 - Electrochemical behaviour of Th in LiF-CaF₂ melt
 - Electrochemical study to determine the activity coefficient of thorium tetrafluoride
 - Prove of the electrochemical purity of the synthesised ThF₄
 - Cyclic voltammetry: W electrode, 100 mV/s, 0.5 2.0 wt.% Th, PtO₂/O²⁻ quasi-ref., 850 C

Cyclic voltammetry on W electrode (100 mV/s) of the LiF-CaF₂-ThF₄ melts, PtO₂/O²⁻ quasi-ref., 850 C

- 2) Electrochemical study of selected actinides
 - Electrochemical behaviour of Th in LiF-CaF₂ melt
 - Activity coefficient determined from cyclic voltammetry: $\gamma(ThF_4) = 9.88 \ 10^{-3}$
 - Cyclic voltammetry: W electrode, 100 mV/s, 1.0 wt.% Th, PtO₂/O²⁻ quasi-ref., 850 C

Cyclic voltammetry on W electrode (100 mV/s) of the LiF-CaF₂-ThF₄ melts, PtO_2/O^{2-} quasi-ref., 850 C

Summary

• Synthesis of pure actinide fluorides

- Europe unique experimental set-up allowing fluorination of actinides in 10 g scale using pure HF gas
- Methods for synthesis of pure UF₄, UF₃, ThF₄ and PuF₃ established
- Analytical scheme developed based on combination of XRD, DSC and ICP-MS
- Products were proven to have excellent purity (> 99% phase pure, > 99.9% metal base)

Electrochemistry in molten fluoride salts

- Experimental set-up developed, installed and optimised
- Methods for preparation and purification of carrier melts LiF-CaF₂ and LiF-ThF₄ developed and proven effective
- Basic electrochemical studies of Th in LiF-CaF₂ melt successfully carried out and used to check purity of the synthesised ThF₄ and the activity coefficient of ThF₄ in this melt was determined
- Electrochemical studies in LiF-ThF₄ melt have started

Thank you for your attention

Stay in touch

EU Science Hub: *ec.europa.eu/jrc*

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: EU Science Hub