
SAMOFAR Final Meeting

4 July 2019

WP2 Overview

Physical and chemical properties required for safety analysis

by Ondřej Beneš

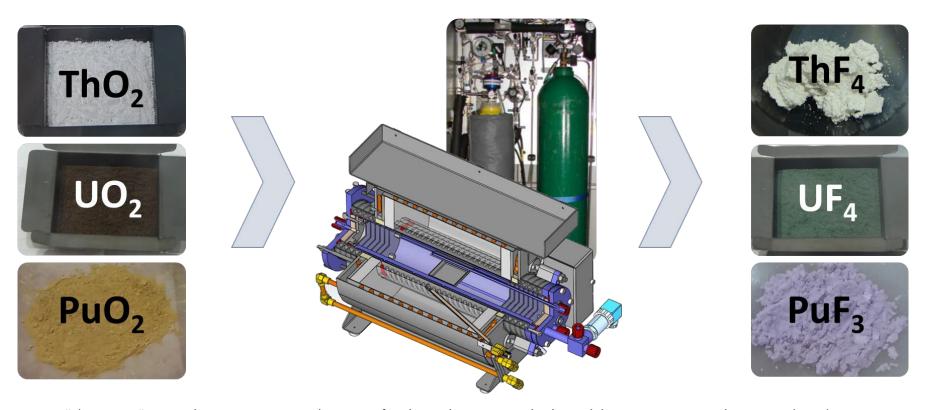
	M0	M12 M2	4	M36	I	M48
_						—
D2.1		TD description of the LiF-ThF ₄ -UF ₄ -PuF	system		JRC	V
D2.2		Retention of Cs and I FPs in MSFR fuel			JRC	/
D2.3		MSFR fuel behaviour under accidental	& undercooling eve	nts	JRC	/
D2.4		Te behaviour under different redox pot	tential of the fuel sa	nlt	CNRS	
D2.5		Interaction of the MSFR fuel with water	er		TU Delf	t 🗸
D2.6		Aerosol formation and migration			PSI	/
D2.7		Technical report on viscometer develop	pment and the resu	lts	TU Delf	t
D2.8		Database of the experimental data of	the MSFR fuel prope	erties	JRC	

today

Milestone 2.1

First experimental results with PuF₃ containing salt, verified by a publication of the results in a peer reviewed journal.

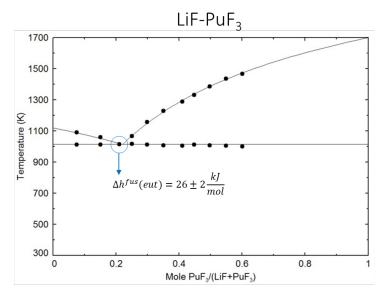
Responsible: JRC-ITU


Milestone 2.2

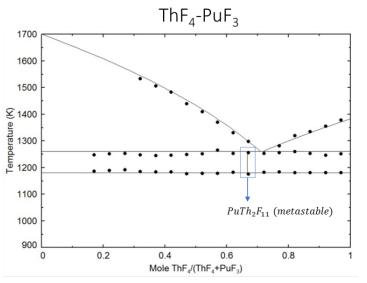
Viscometer prototype up and running, verified by first results on molten fluoride salts.

Responsible: TU Delft

Highlights: Actinide fluorides synthesis

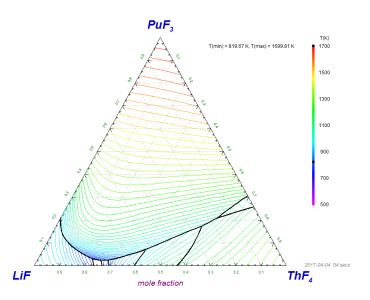


P. Souček, O. Beneš, A. Tosolin, R.J.M. Konings, Chemistry of Molten Salt Reactor Fuel Salt Candidates, Trans. Am. Nucl. Soc., 118 (2018) 114-117.

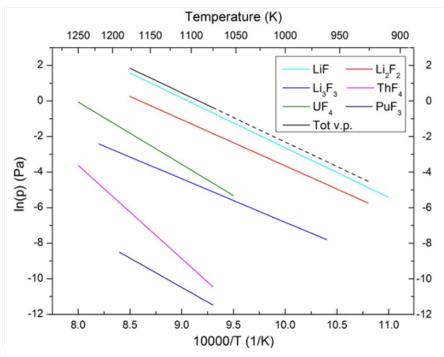


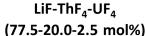
Highlights: New phase diagrams

<u>A. Tosolin</u>, P. Souček, O. Beneš, J.-F. Vigier, L. Luzzi, R.J.M. Konings, *Synthesis of plutonium trifluoride by hydro-fluorination and novel thermodynamic data for the PuF* $_3$ -LiF system, J. Nucl. Mat. 503 (2018) 171-177.


<u>A. Tosolin</u>, S. Mastromarino, J.-F. Vigier, L. Luzzi, R.J.M. Konings, **O. Beneš**, *Phase transitions in the ThF_4-PuF_3 system*, in preparation.

Improved thermodynamic database: JRCMSD


- fuel optimization
- properties prediction

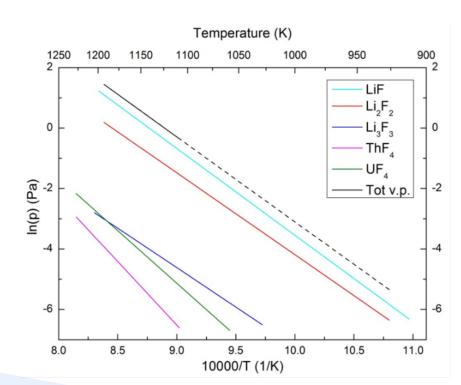


Highlights: Properties of MSFR selected fuel compositions

$$T_m$$
 (by DSC) = 828 ± 3 K

$$T_b = 2019 \pm 10 \text{ K}$$

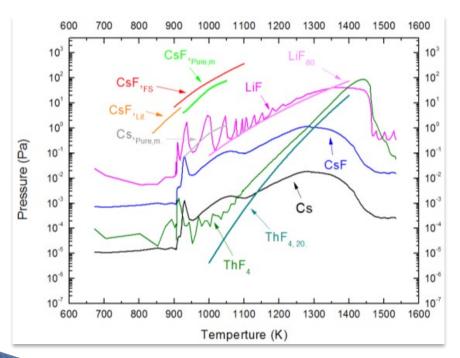
v.p. (1000 K) = 0.045 Pa ± 50%


LiF-ThF₄-UF₄-PuF₃ (77.5-6.6-12.3-3.6 mol%)

$$T_m$$
 (by DSC) = 893 \pm 5 K

$$T_b = 1908 \pm 10 \text{ K}$$

 $v.p. (1000 \text{ K}) = 0.099 \text{ Pa} \pm 50\%$



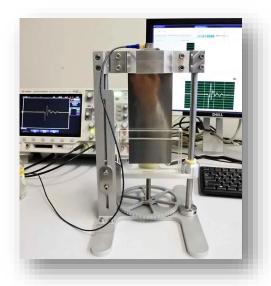
Highlights: Retention of Cs in the MSR fuel

- to demonstrate retention of FP in the fuel matrix
- to determine volatility of the fuel
- to determine thermodynamic stability
- to determine gas composition

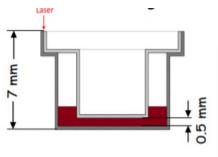
CsF dissolved in LiF - ThF₄

CsF is one of the stable form of Cs-FP in the MSR fuel:

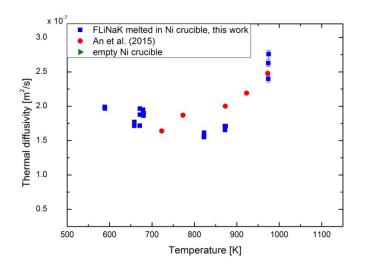
•
$$Cs \xrightarrow{\Delta G(F_2) \sim MSFR, T = 900K} CsF$$



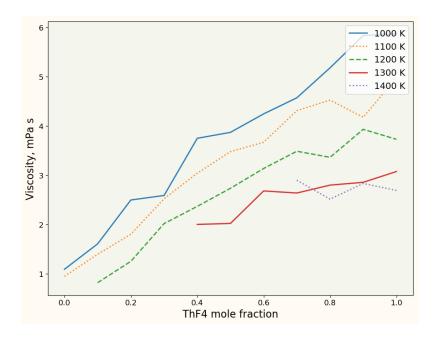
Highlights: Development of New Experimental techniques

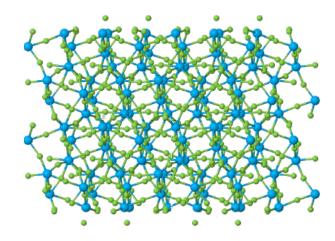

TUDelft Viscosity

Thermal conductivity

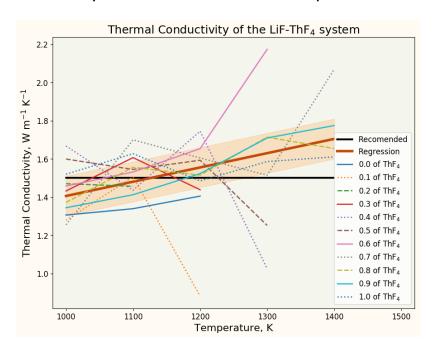


Fluid	Т	Viscosity ultrasound	relative error to real value
	°C	mPa s	%
	26.3 ± 0.07	0.78 ± 0.03	0.26
Water	25.1 ± 0.07	0.85 ± 0.03	6.3
	25.3 ± 0.11	0.87 ± 0.02	6.7
96% Ethanol	26.3 ± 0.1	1.07 ± 0.01	-
90% Ethanol	26.2 ± 0.04	1.19 ± 0.01	1.6
Oil	27.8 ± 0.24	42 ± 0.66	5.1
Oll	27.8 ± 0.17	42.4 ± 0.43	6.1
Water/Glycerine	27.7 ± 0.07	20.6 ± 0.16	5.5
30/70 vol %	26.8 ± 0.56	21.1 ± 0.9	4.6
ionic salt	27.4 ± 0.22	17.55 ± 0.43	22.5
ionic Salt	28.0 ± 0.11	16.88 ± 0.17	24.9




Highlights: Molecular Dynamics

Calculated viscosity of LiF-ThF₄ system as a function of composition



Structure of ThF₄

Thermal conductivity of LiF-ThF₄ system as a function of temperature

Total scientific output up to date:

- 2 / 2 Milestones Achieved
- 6 / 8 Deliverables Done
- 3 Peer review articles Published (2 by Alberto lead)
- 2 Papers in press to be submitted within 1 month (2 Alberto lead, 2 Sara co-author)
- 3 Papers to be submitted by the end of 2019 (1 Alberto lead, 1 Sara lead)
- ... and of course 2 PhD students granted with great output and effort

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: **EU Science Hub - Joint Research Centre**

LinkedIn: Joint Research Centre

YouTube: **EU Science Hub**

Task 2.1 – Thermodynamic data of salts

- Synthesis of UF₄, ThF₄ and PuF₃ done \rightarrow **Published in** *JFC* **200 (2017) 3340**
- Re-evaluation of UF₄ melting point done
- Phase diagram on LiF-PuF₃ done → **Published in JNM 503 (2018) 171**
- ThF₄-PuF₃ is finalized (**Publication drafted** by Alberto, additional help by Sara) **Delivered (D2.1)**

Task 2.2 - Thermal properties of salts

- viscometer under development construction and testing ongoing
- heat capacity of ThF₄ and LiF-ThF₄ measured (interpretation phase) →
 Publication in press(Alberto presentation)
- melting point determination of Option 1 (**Published in JNM 508 (2018) 319**) and Option 2 **done** (Alberto & Sara presentation) (**Publication in press**),
- thermal conductivity crucible design done with first tests on LiF (presentation Alberto)
- viscosity will follow
- MD simulations

Task 2.3 – Phase segregation of salts

- estimations of primary crystallization phases have been done for both fuel compositions
- final results done and **Delivered (D2.3)**

Task 2.4 – Thermal conductivity of solid crust

- Being developed and measured – according to plan. Tests on LiF and PuF_3 done (Sara presentation).

Task 2.5 – Salt interaction with water

Measurements being performed at TUD with and W/O Co-source Delivered (D2.5)
 Publication in preparation

Task 2.6 – Retention properties of elements in the fuel salt

- KEMS measurements with LiF-UF₄-ThF₄ salts containing Cs and I done
- supported by Thermodynamic modelling Done and **Delivered (D2.2), Publication in Preparation**
- Te study with respect to redox potential done by CNRS and **Delivered (D2.4)**

Task 2.7 – Vaporization behaviour under accidental conditions

- KEMS measurements of Option 1 and 2 compositions Delivered (D2.3)

(Option 1: Published in JNM 508 (2018) 319, Option 2: Paper in press)

(Alberto presentation)

- Aerosol particle distribution simulated with and without LiF influence **Delivered (D2.6)**

