

SAMOFAR Final Meeting WP4: Accident Analysis

July 4, 2019

Danny Lathouwers Delft University of Technology

Main contributors

- **CNRS**: A. Laureau, P. Rubiolo
- EdF: S. Poumerouly, D. Lecarpentier
- KIT: A. Rineiski, S. Wang, M. Massone
- > POLITO: N. Abrate, A. Uggenti, S. Dulla, M. Santanoceto
- > POLIMI: E. Cervi, S. Lorenzi, A. Cammi, L. Luzzi
- > PSI: R. de Oliveira, J. Krepel

TUD: M. Tiberga, F. Alsayyari, Z. Perkó, D. Lathouwers

Main work performed

- Definition of transients
- Code development
- Code verification
- Steady-state and transient analysis
- Uncertainty quantification

Relevant transients

- Two types of transients are considered
 - Fuel circuit transients
 - Transients involving the emergency draining tank

Code development

- Aim is to build new or extend existing code systems with special abilities for the multi-physics modeling of the MSFR
- > The following capabilities are necessary
 - Moving fuel -> moving precursors
 - Three-dimensionality and geometric flexibility
 - Include feedback effects from temperature and of bubbling

- Common features
 - Navier-Stokes-like
 - precursor transport
 - heat transfer
 - 3-dimensional
 - temperature feedback
- POLIMI and PSI: OpenFOAM based solvers for flow and neutronics
 - POLIMI: includes multiphase flow for bubbling analysis
 - PSI: includes freezing capabilities in the domain
- TUDelft: Finite element based in-house codes
- EdF/KIT: SIMMER system code

Inter-code benchmarking

The CNRS benchmark cors

- Simplified benchmark for multiphysics codes, still representative of MSFR. Developed at CNRS by M. Aufiero, A. Laureau, P. Rubiolo.
- Goal: easily test the capabilities of multi-physics codes with respect to the characteristics of MSR systems (fuel motion and strong multiphysics coupling).
- Step-by-step approach, three phases: (0) single physics, (1) code coupling with increasing complexity and (2) transient analysis
- Main characteristics:
 - Prescribed nuclear data (condensed into 6 groups)
 - No Doppler feedback, only density
 - Laminar flow, Boussinesq approximation
 - Simple 2D geometry
 - Constant thermodynamic properties

CNRS benchmark – Phase 1

Step 11 – Velocity coupling

	(pcm)
PoliMi	- 62.0
PSI	- 63.0
TUD-S ₂ -P ₁	- 62.0
TUD-S ₆ -P ₃	- 60.7

Step 12 – Power coupling

6 <u>×10</u>¹⁷ - - TUD-S 4 - - TUD-S PSI 2 $- \Sigma_{f,0} \Phi_0 \; ({
m s}^{-1} \; {
m m}^{-2})$ --- PoliMi 0 -2 -4 $\Sigma_f \Phi$. -6 -8 -10 0 0.5 1 1.5 2 x (m) Zoning used in TUD results explains observed differences SAMOFAR

PoliMi - Step 1.3 - Fission rate difference

PoliMi - Step 1.1 - Delayed neutron source

-2.50e+17

-4.00e+17

-5.50e+17

-7.00e+17

-8.50e+17

-1.00e+18

DN source (s⁻¹ m

2.50e+17 2.25e+17

2.00e+17

1.75e+17

1.50e+17

1.25e+17

1.00e+17

7.50e+16

5.00e+16

2.50e+16

0.00e+00

 TUD-S_2 - Step 1.3 - Fission rate difference ${}_{\Delta\,\text{Fission rate}\,(\text{s}^{-1}\,\text{m}^{-2})}$

TUD-S₆ - Step 1.1 - Delayed neutron source

 Δ Fission rate (s⁻¹ m⁻²)

PSI - Step 1.3 - Fission rate difference Δ Fission rate (s⁻¹ m⁻²)

Steady-state

Nominal power	3000 MW
Nominal flow rate	4.5 m³/s
Fuel cold leg temperature	923 K
Fuel hot leg temperature	1023 K
HX pressure drop	4.5 bar
Intermediate coolant temperature	908 K
Fuel composition (% mol.)	LiF (77.5)
	ThF (6.6)
	UF4 (12.3)
	TRU-F3 (3.6)

ULOHS transients

- 1) Stepwise reduction to zero of the HX heat transfer coefficient
- 2) Exponential reduction to 20% of intermediate and ECS mass flow rate, with time constant $\tau=5s$

Example of neutronics UQ by xGPT

MSFR model: 3D, full-core simulation, uniform temperature of 900 K, equilibrium salt

composition

Scientific output

- 3 PhD thesis (directly funded from WP4)
- 8 Papers
- 7 Conference proceedings
- > 20 MSc/BSc theses
- More to come ...

