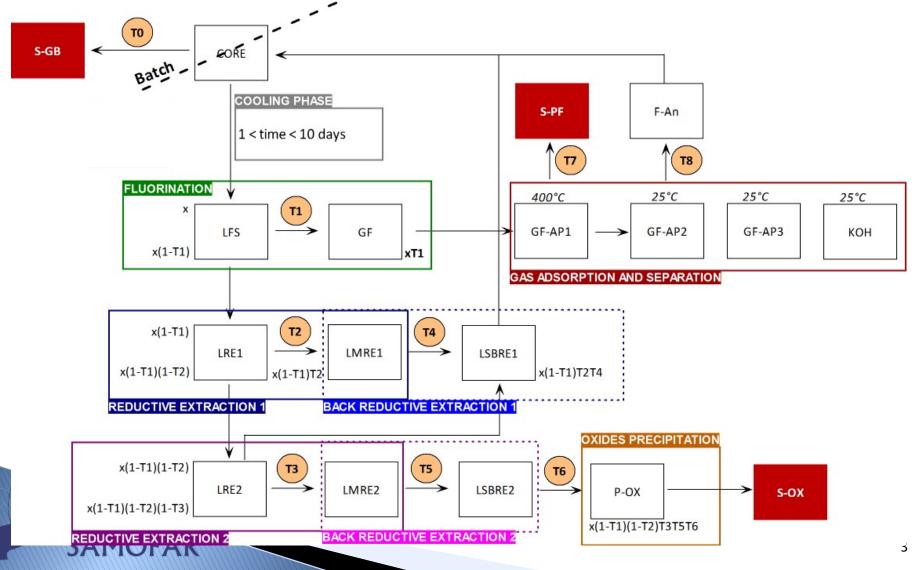
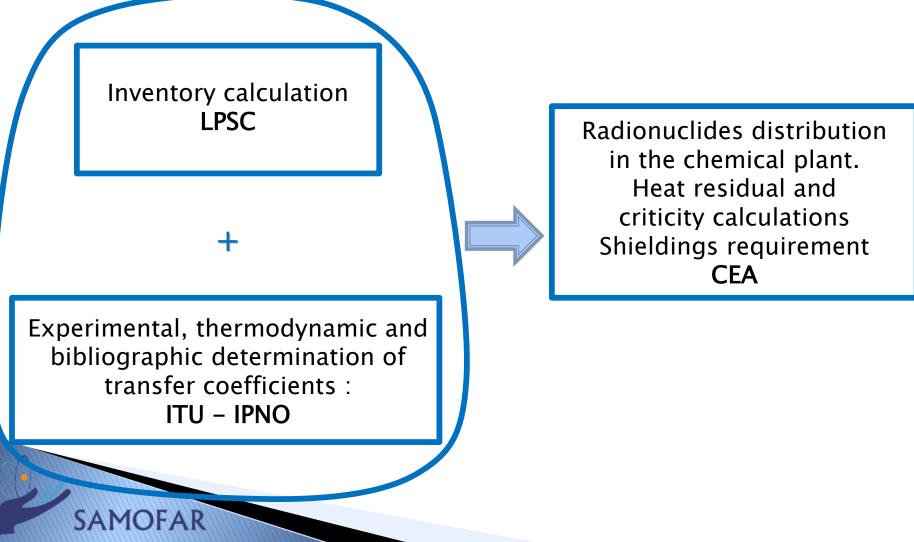
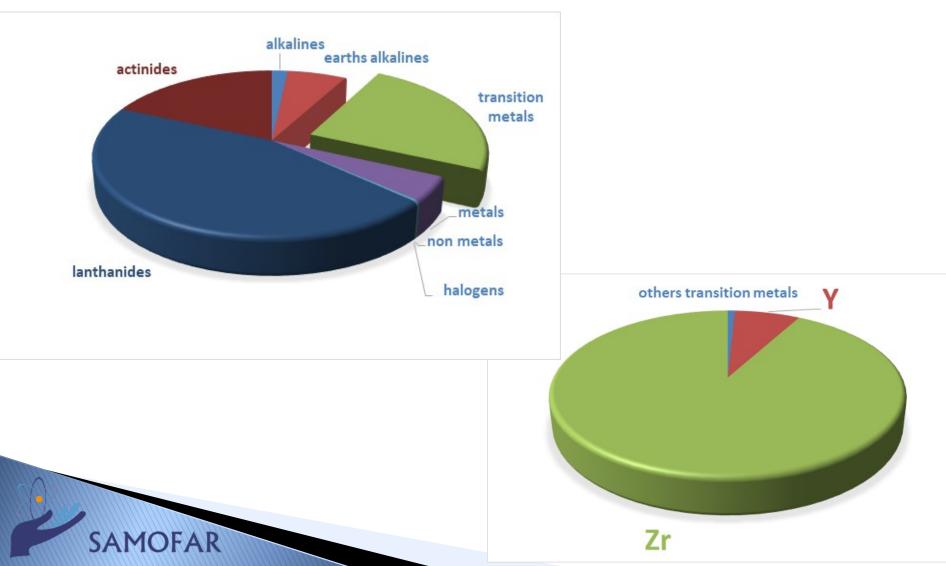
This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 661891

SAMOFAR Final meeting 4 July 2019

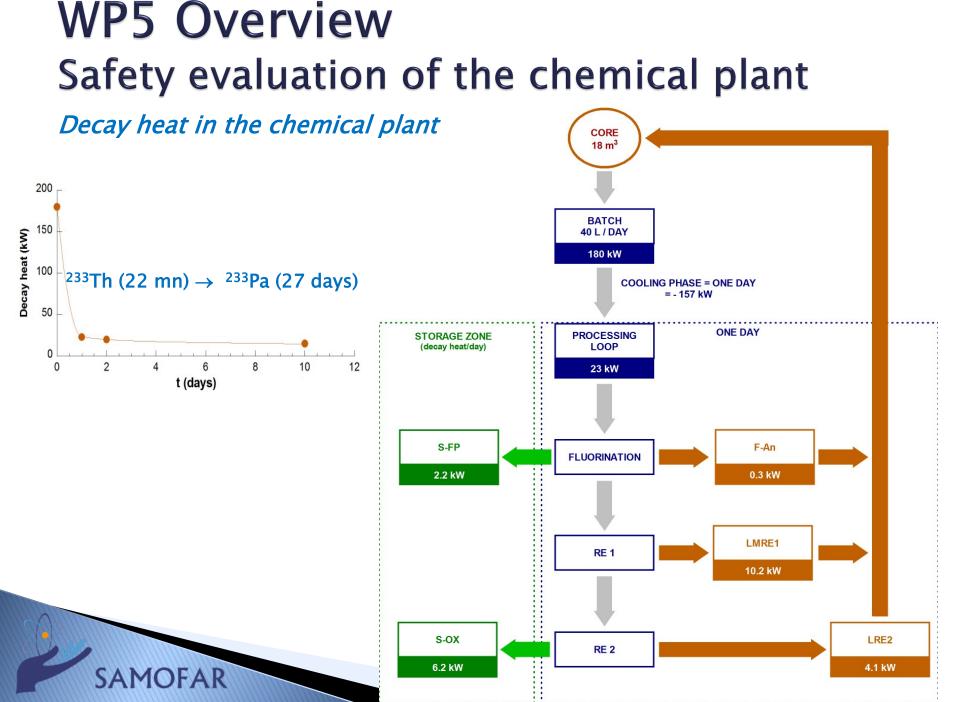


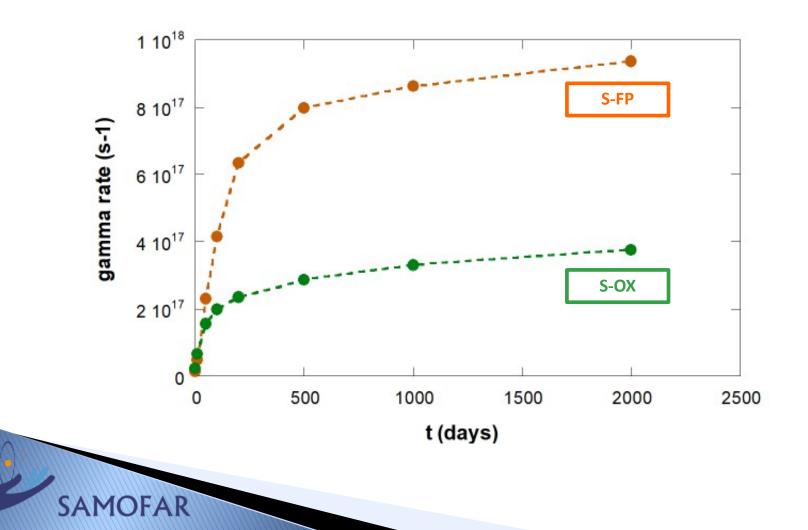

- ► Task 5.1 Evaluation of nuclide inventory at various stages in the chemical plant (CNRS, JRC) → Deliverables 5.1 and 5.5
- Task 5.2 Coupling of neutronic and reprocessing efficiencies (CNRS)
- ► Task 5.3 Evaluation of re-criticality issues (CNRS, CEA) → Deliverable 5.3
- Task 5.4 Design and safety of the chemical plant (CNRS, CEA, JRC) Deliverable 5.2

Task 5.5 Material issues (CNRS, CINVESTAV) \rightarrow Deliverable 5.4

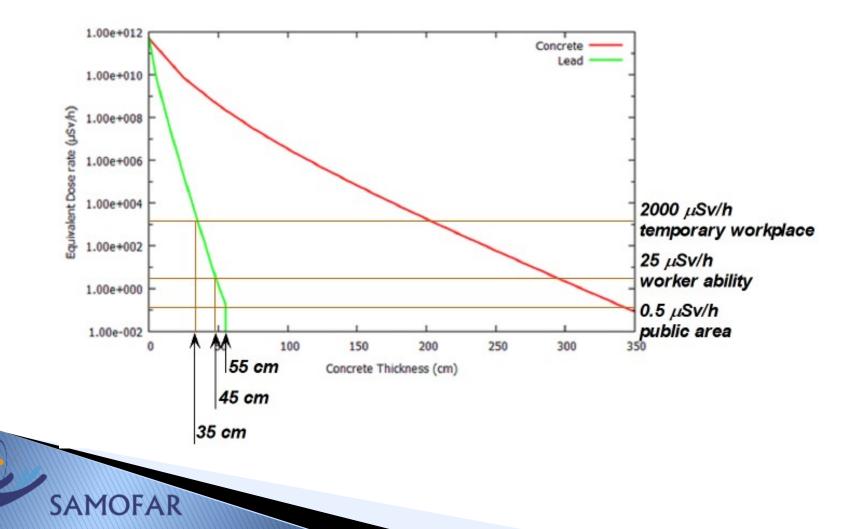


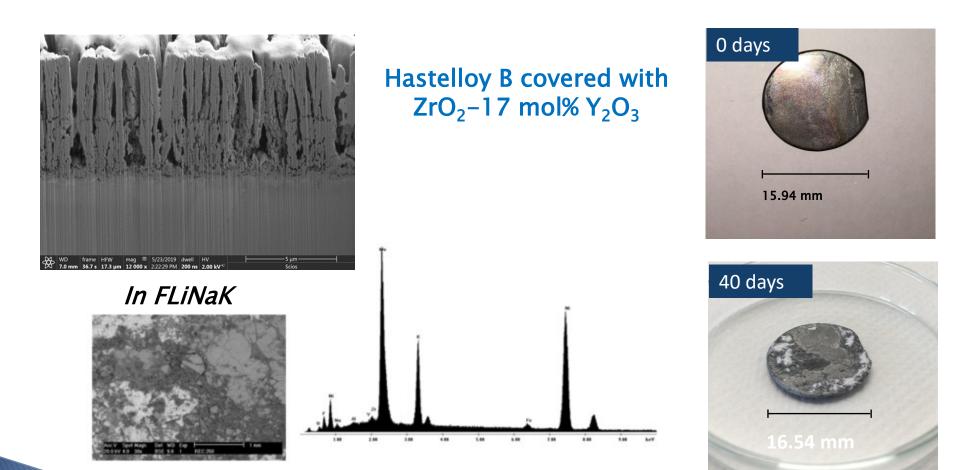
Description of the chemical plant


Nuclide inventory in the batch


Transfer coefficients assessment

Elément	z	GB	FLUO	RE1	RE2	BRE1	BRE2	5n	50	0,5	0,5	1	1	0,1	0,1
Li	3							Sb	51	0,5	0,99	1	1	0	0
Be	4	0	0	0,15	0,3	1	1	Te	52	0,5	0,99	1	1	0	0
в	5	0,98	1	0	0	0	0	1	53	0	0,99	0	0	0	0
с	6	0,5	0,99	0,99	0,99	1	1	Xe	54	0,99	0,9	0	0	0	0
N	7	1	0	0	0	0	0	Cs	55	0	0	0,037	0,660	1	1
0	8	0	1	0	0	0	0	Ba	56	0	0	1,000	0,997	1	1
F	9	0	0	0	0	0	0	La	57	0	0	0,068	1,000	1	1
Ne	10	1	0	0	0	0	0	Ce	58	0	0	0,150	0,650	1	1
Na	11	0	0	0,030	0,608	1	1	Pr	59	0	0	0,150	0,650	1	1
Mg	12	0	0	0,99	0,999	1	1	Nd	60	0	0	0,098	1,000	1	1
Al	13	0	0	0,99	0,999	1	1	Pm	61	0	0	0.061	1,000	1	1
Si	14	0,9	0,99	1	1	1	1	Sm	62	0	0	0,092	1,000	1	1
P	15	1	1	0	0	0	0	Eu	63	0	0	0,035	0,989	1	1
s	16	0,9	0,99	ů ů	ō	0	0	Gd	64	0	0	0,150	0,650	1	1
ci	17	0	0,99	0	0	0	0	Tb	65	0	0	0,150	0,650	1	1
Ar	18	1	0,55	0	0	0	0	Dy	66	0	0	0,150	0,650	1	1
ĸ	19	0	0	0,020	0,506	1	1	Но	67	0	0	0,150	0,650	1	1
Ca	20	0	0	0,020	0,99	1	1	Er	68	0	0	0,150	0,650	1	1
Sc	20	0	0	0,2	0,55	1	1	Tm	69	0	0	0,200	0,700	1	1
Ti	22	0	0,99	1,000	1	1	1	Yb	70	0	0	0,200	0,700	1	1
v	23	0	0,99	0,99	0.999	1	1	Lu	71	0	0	0,150	0,650	1	1
Cr	23	0	0,99	0,99	0,999	1	1	Hf	72	0	0	0,900	0,990	1	1
Mn	25	0	0,99	0,99	0,999	1	1	Та	73	0,5	0,99	1	1	0	0
Fe	25	0	0,55		0,999	0,5	0,5	w	74	0,5	0,99	1	1	0	0
Co	20	-		0,99	-	0,5		Re	75	0,5	0,99	1	1	0	0
Ni	28	0,5	0,5		0,999	0,5	0,5	Os	76	0,5	0	1	1	0	0
			-	0,99	0,999			Ir	77	0,5	0,99	1	1	0	0
Cu	29 30	0,5	0	0,99	0,999	0,5	0,5	Pt	78	0,5	0,99	1	1	0	0
Zn		0,5		0,99	0,999	0,5	0,5	Au	79	0,5	0	1	1	0	0
Ga	31	0,5	0,99	0,99	0,999	0,1	0,1	Hg	80	0,5	0,99	1	1	0	0
Ge	32	0,5	0,99	0,99	0,999	0,1	0,1	TI	81	0,5	0	1	1	0	0
As	33	0,9	0,99	0	0	0	0	Pb	82	0,5	0,99	1	1	0	0
Se	34	0,8	0,99	0	0	0	0	Bi	83	0,5	0	1	1	0	0
Br	35	0	0,99	0	0	0	0	Po	84	0,5	0	1	1	0	0
Kr	36	1	0	0	0	0	0	At	85	0,99	0,99	0	0	0	0
Rb	37	0	0	0,022	0,527	1	1	Rn	86	1	0	0	0	0	0
Sr	38	0	0	0,8	0,99	1	1	Fr	87	0	0,99	0	0	0	0
Y	39	0	0	0,8	0,9	1	1	Ra	88	0	0	0,5	0,9	1	1
Zr	40	0,2	0,2	1,000	1,000	1	1	Ac	89	0	0	0,15	0,65	1	1
Nb	41	0,5	0,99	1	1	0,1	0,1	Th	90	0	0	0,051	1,000	1	1
Mo	42	0,5	0,99	1	1	0,1	0,1	Pa	91	0	0	0,992	1	1	1
TC	43	0,5	0,99	0,9	0,99	0	0	u	92	0	0,99	0,999	1	1	1
Ru	44	0,5	0	1	1	0	0	Np	93	0	0,99	0,998	1,000	1	1
Rh	45	0,5	0,99	1	1	0	0	Pu	94	0	0,9	0,994	1,000	1	1
Pd	46	0,5	0	1	1	0	0	Am	95	0	0	0,992	1,000	1	1
Ag	47	0,5	0	1	1	0	0	Cm	96	0	0	0,955	1,000	1	1
Cd	48	0,8	0,99	1	1	0	0	Bk	97	0	0	0,900	0,999	1	1
In	49	0,5	0	1	1	0,1	0,1	Cf	98	0	0	0,994	1,000	1	1


6


Gamma rate in the storage zones

Shielding requirements

WP5 Overview Safety evaluation of the chemical plant Material issues

SAMOFAR

In LiF-ThF₄

Thank you for your attention

